Atroposelective attack of nucleophiles on 2-formyl-1-naphthamides and their derivatives: chelation and non-chelation control

Jonathan Clayden, ${ }^{* a}$ Catherine McCarthy, ${ }^{a}$ Neil Westlund ${ }^{a}$ and Christopher S. Frampton ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Manchester, Oxford Rd., Manchester, UK M13 9PL
${ }^{b}$ Roche Discovery Welwyn, 40 Broadwater Rd., Welwyn Garden City, Herts, UK AL7 3AY
Roche Discovey Welwy, 40 Broadwater Rd., Wehyn Garden City, Hers, UK AL7 3AY

Received (in Cambridge, UK) 24th January 2000, Accepted 10th March 2000

Organometallic nucleophiles attack 2-formyl-1-naphthamides to give secondary alcohols with widely varying atroposelectivity. By careful choice of reagent, selectivities of up to $>99: 1$ in favour of either the anti or the syn atropisomer can be obtained. Ethers and amines may be synthesised atroposelectively from acetals or imines. The sense of the selectivity is determined by the reactive conformation of the $\mathrm{Ar}-\mathrm{CHO}$ bond, itself dependent on the coordinating and chelating ability of the nucleophile's counterion. The roles of conformation, Lewis acids, and chelation/non-chelation control in relation to stereoselectivity are discussed.

Introduction

In the previous paper ${ }^{1}$ we described the synthesis of secondary alcohols 1 by atroposelective reduction of the corresponding ketones 2 (Scheme 1, disconnection (a)). We had earlier reported the synthesis of the same class of alcohols by atroposelective addition of ortholithiated 1-naphthamides 3 to aldehydes (disconnection (b)) ${ }^{2,3}$ In this paper we turn to the third possible route to the alcohols, indicated by disconnection (c)-the addition of an alkyl metal reagent to a 2 -formylnaphthamide $4 .{ }^{4}$ We also consider the atroposelective addition of nucleophiles to the oxonium and imine ${ }^{5}$ derivatives of 4 (leading to ethers 21 and amines 24-27).

Conformational freedom around the $\mathrm{R}-\mathrm{CHO}$ bond means that nucleophilic attack on chiral aldehydes ${ }^{6}$ only rarely exhibits high levels of stereoselectivity. Additions of Grignard reagents to simple acyclic chiral aldehydes typically give up to 80:20 selectivity. ${ }^{78}$ More complex aldehydes containing bulky N, N-dibenzylamino groups ${ }^{9,10}$ or silyl substituents ${ }^{11}$ or lacking free rotation ${ }^{12}$ demonstrate rather higher levels of selectivity. Cram and Wilson ${ }^{13}$ noted that metal chelation by the aldehyde carbonyl oxygen and a second heteroatom may increase the stereoselectivity considerably, and in favourable cases, simple chiral aldehydes bearing alkoxy substituents may react with $>90: 10$ stereoselectivity with Grignard reagents and, to a lesser extent, organolithiums. ${ }^{14,15}$ Higher selectivities still may be obtained, for example, by the use of RTiCl_{3} reagents, ${ }^{16,17}$ but in general selectivity in chelation-controlled addition is supremely
sensitive to the nature of the organometallic used and to the conditions of the reaction. ${ }^{18}$ Examples of additions to chiral aldehydes with high levels of $(1,3)-,-{ }^{15,19,20}$ and more remote ${ }^{21,22}$ asymmetric induction have also been reported. There are a few reports of the use of planar ${ }^{23,24}$ or axial ${ }^{25}$ chirality to govern the direction of attack on aldehydes.

Results and discussion

Synthesis of 2-formyl-1-naphthamides

The aldehydes $\mathbf{4}$ were very conveniently made from their parent 1-naphthamides 3 by ortholithiation ${ }^{26}$ and reaction with DMF (Scheme 2, Table 1). The yield of $\mathbf{4 b}$ and $\mathbf{4 e}$ was lowered by a competing addition of s-BuLi to the aromatic ring. The synthesis of $\mathbf{4 b}$, for example, also produced four diastereoisomers of the amides 5 in 65% yield. Addition to the ring appears to be a problem when one of the N-alkyl groups is particularly large, and may be a result of hindrance to $\mathrm{O}-\mathrm{Li}$ coordination. ${ }^{27}$

Only $\mathbf{4 a}$ could not be made in this way: N, N-dimethylamides are generally too electrophilic (at the carbonyl group) to undergo ortholithiation. ${ }^{26}$ Instead, we made $\mathbf{4 a}$ from 1-bromo-2-methylnaphthalene 6 (Scheme 3). Bromination ${ }^{29}$ and HassBender oxidation ${ }^{30}$ gave the aldehyde $8^{29,31}$ which was protected as its dioxolane $9 .{ }^{32}$ Bromine-lithium exchange gave an organolithium which reacted with N, N-dimethylcarbamoyl chloride to yield naphthamide $\mathbf{1 0}$ which was deprotected using acid to give $\mathbf{4 a}$.

Scheme 1 Atroposelective routes to 1.

Additions of nucleophiles to 2-formyl-1-naphthamides 4

We started by treating the aldehydes $\mathbf{4}$ with a range of simple organolithium and Grignard reagents in THF at $-78{ }^{\circ} \mathrm{C}$ as shown in Scheme 4 and Table 2: methyllithium (entry 1), butyllithium (entry 2), octynyllithium (entry 7), phenyllithium (entry 10); and methylmagnesium bromide (entry 12), butylmagnesium chloride (entry 13), phenylmagnesium bromide (entry 17), allylmagnesium bromide (entry 18). The reactions gave moderate to excellent yields of the alcohols 11-15 but with selectivities varying greatly, from $140: 1$ syn to $>99: 1$ anti.

The additions have one simple overriding feature: all the Grignard reagents add with syn-selectivity, and (apart from PhLi and octynyllithium) the organolithiums add with antiselectivity. Other than this, the trends are much less distinct.

Scheme 2 Synthesis of aldehydes 4 (i) s-BuLi, THF, $-78^{\circ} \mathrm{C}$; (ii) $\mathrm{Me}_{2} \mathrm{NCHO},-78^{\circ} \mathrm{C}$.

Table 1 Synthesis of aldehydes 4

Entry	R^{1}	R^{2}	Starting material	Product	Yield (\%)
1	Me	$t-\mathrm{Bu}$	$\mathbf{3 b}$	$\mathbf{4 b}$	33^{a}
2	Et	Et	$\mathbf{3 c}$	$\mathbf{4 c}$	78
3	$i-\mathrm{Pr}$	$i-\operatorname{Pr}$	$\mathbf{3 d}$	$\mathbf{4 d}$	82^{28}
4	$\mathrm{CH}(n-\operatorname{Pr})_{2}$	$\mathrm{CH}(n-\operatorname{Pr})_{2}$	$\mathbf{3 e}$	$\mathbf{4 e}$	59 or 44^{2}

${ }^{a}$ Plus 5 (65\%).

Phenyl and butyl additions are more selective than allyl additions, with the methyl additions lying in between. Selectivity also varies with the N-substituents R^{1} and R^{2} : generally, but by no means always, the $\mathrm{N} i-\mathrm{Pr}_{2}$ aldehyde $\mathbf{4 d}$ reacts with slightly higher selectivity than the NEt_{2} aldehyde $\mathbf{4 c}$. The $\mathrm{N}\left(\mathrm{CHPr}_{2}\right)_{2}$ aldehyde 4 e underwent the most anti-selective (with MeLi, entry 1) and the most syn-selective (with PhMgBr , entry 17) reactions of all, but its reactions with BuLi (entry 2) and BuMgBr (entry 13) were notably unselective, and gave significant amounts of the reduction product $\mathbf{1 6 e}$. Our first conclusion, therefore, is that the reactions of $\mathbf{4}$ are controlled

Scheme 3 Synthesis of 4a; (i) NBS, $\left(\mathrm{PhCO}_{2}\right)_{2}, \mathrm{CCl}_{4},(60 \%)$; (ii) 2-nitropropane, $\mathrm{NaOEt}, \mathrm{EtOH},(62 \%)$; (iii) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, p-\mathrm{TsOH}, \mathrm{PhH}$, (91%); (iv) $1 . t$ - $\mathrm{BuLi} \times 2$, 2. $\mathrm{ClCONMe}_{2}$; (v) $p-\mathrm{TsOH}$, $\mathrm{AcMe}(83 \%$ over 2 steps).

Table 2 Additions of nucleophiles to aldehydes 4

Entry	Reagent	Additives (equiv.)	From 4c		From 4d		From 4e	
			Product, yield ${ }^{a}$ (\%)	Ratio ${ }^{b}$ anti:syn	Product, yield ${ }^{a}$ (\%)	Ratio ${ }^{b}$ anti:syn	Product, yield ${ }^{a}$ (\%)	Ratio ${ }^{b}$ anti:syn
1	MeLi	-	11c 94	$71: 29$	11d 90	80:20	11e 99	>99: 1
2	$n-\mathrm{BuLi}$	-	12c 56	85:15	12d 83	85:15	12e $91+6^{c}$	49 : 51
3		HMPA (4)	12c 63	66:34	12d 65	$73: 27$	-	-
4		$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1)^{d}$	12c 67	57:43	12d 41	48:52	-	-
5		$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2)^{d}$	12c 49	43:57	12d 59	45:55	-	-
6		$\mathrm{Me}_{3} \mathrm{Al}(0.1)$	-	-	12d 56	94:6	-	-
7	OctynylLi	- ${ }^{\text {a }}$ Al	-	-	13d 90	20:80	-	-
8		$\mathrm{Me}_{3} \mathrm{Al}$ (0.1)	-	-	13d 66	93:7	-	-
9		$i-\mathrm{Bu}_{2} \mathrm{AlH}$ (1)	-	-	13d 50	>99:1	-	-
10	PhLi	-	14c 52	19:81	14d 95	34:66	-	-
11		HMPA (4)	14 c - e	27:73	14d - ${ }^{e}$	33: 67	-	-
12	MeMgBr	-	11c 91	25:75	11d 66	23:77	-	-
13	$n-\mathrm{BuMgCl}$	-	12c 72	14:86	12d 57	15:85	12e $33+33^{c, f}$	34:66
14		HMPA (4)	12c 68	38:62	12d 62	32:68	-	-
15		$\mathrm{MgBr}_{2}(1)^{d}$	12c 83	43:57	12d 61	50:50	-	-
16		$\mathrm{ZnBr}_{2}(1)^{d}$	12c 74	37:63	12d 89	32:68	-	-
17	PhMgBr	-	14c 81	14:86	14d 71	3:97	14e 90	1:140
18	AllylMgBr	-	15c 97	42:58	15d 94	40:60	-	-
19	$\mathrm{MeTi}(\mathrm{O} i-\mathrm{Pr})_{3}$	-	11c 70	98:2	11d 99	$300: 1$	11e 59	>99:1
20	$n-\mathrm{BuTi}(\mathrm{O} i-\mathrm{Pr})_{3}$	-	12c 64	74:26	12d 63	125:1	-	-
21	OctynylTi(Oi-Pr)3	-	13c 76	95:5	13d 52	125:1	-	-
22	$\mathrm{PhTi}(\mathrm{O} i-\mathrm{Pr})_{3}$	-	14c 97	11:89	14d 96	85:15	-	-
23	AllylTi(Oi-Pr)3	-	15c 92	71:29	15d 100	$77: 28$	-	-
24	MeTiCl_{3}	g	11c $48+12^{h}$	6:94	11d $41+13^{h}$	65:35	-	-
25	MeTiCl_{3}	i	18^{h}	-	23^{h}	-	-	-

${ }^{a}$ Isolated yield of mixture. ${ }^{b}$ Determined by analytical HPLC. ${ }^{c}$ Yield of reduction product $16 .{ }^{d} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the absence of THF. ${ }^{e}$ Product not isolated. ${ }^{f} n-\mathrm{BuMgBr}$ used. ${ }^{g}$ Reagent formed in situ from $\mathrm{MeMgBr}+\mathrm{TiCl}_{4}$. ${ }^{h}$ Yield of pinacol product 17. ${ }^{i}$ Reagent formed in situ from $\mathrm{MeLi}+\mathrm{TiCl}_{4}$.

s-trans

s -cis

Fig. 1 Conformation of aldehyde 4.

11c $R^{1}=R^{2}=E t$
$\begin{aligned} & \text { 11d } R^{1}=R^{2}==\mathrm{Pr} \\ & \text { 11 }\end{aligned}$
11e $R^{1}=R^{2}=\mathrm{CH}(n-\mathrm{Pr})_{2}$

13c $R^{1}=R^{2}=E t$

14c $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et}$
14d $R^{1}=R^{2}=i P r$
14e $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}(n \mathrm{Pr})_{2}$

16d $R_{1}^{1}=R_{2}^{2}=\angle \mathrm{Pr}$
16eR $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}(n-\mathrm{Pr})_{2}$

17

Scheme 4

principally by the nature of the metal and are influenced relatively little by the size of R^{1} and R^{2}.

In contrast with the reactions of aldehydes 4 the reactions of ketones 2 all proceed with the same stereochemical sense ${ }^{1}$ because all reagents attack $\mathbf{2}$ from the less hindered face (syn to the amide $\mathrm{C}=\mathrm{O}$) of its s-cis conformation. For aldehyde 4, both s -cis and s-trans conformations are accessible (Fig. 1), and 4 may present either face of its electrophilic carbonyl group to an incoming reagent simply by rotation about the $\mathrm{Ar}-\mathrm{CHO}$ bond. The effect of the metal on the stereoselectivity of the reaction could be a result of the degree of chelation by the metal between the amide and the aldehyde carbonyl groups, which would affect the $\mathrm{Ar}-\mathrm{CHO}$ torsional angle in the transition state. ${ }^{33}$ This being so, additives which promote or dissuade chelation should influence the selectivity accordingly. We added to the reactions of $\mathrm{BuLi}, \mathrm{PhLi}$ and BuMgCl four equiv. of HMPA
(entries 3, 11, 14, Table 2) in an attempt to prevent amidealdehyde chelation: in all cases selectivity decreased, becoming more $s y n$-selective from BuLi and more anti-selective from PhLi and BuMgCl . We also repeated the reactions of BuLi and BuMgCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of Lewis acids: $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1 or 2 equiv., entries 4 and 5) to discourage chelation and MgBr_{2} and ZnBr_{2} (entries 15, 16) to encourage it. Again, the only effect was that the selectivity, in whichever direction, decreased.

Organoaluminium reagents can exhibit high levels of stereoselectivity in their additions to aldehydes. ${ }^{22}$ Additionally, trimethylaluminium has been shown to be capable of forming five-membered chelates with epoxyalcohol derivatives, increasing their reactivity and controlling the regioselectivity of their reactions. ${ }^{34}$ We therefore briefly investigated the effect of organoaluminium reagents on the stereoselectivity of additions to chiral aldehydes. In the presence of one equivalent of DIBAL-H, octynyllithium gave the alcohol 13d solely as its anti-diastereoisomer (entry 9). ${ }^{35}$ The reaction was (unsurprisingly) accompanied by a significant amount of reduction to alcohol 16d and behaved unpredictably, with 16d sometimes being the sole product. ${ }^{36}$ No reaction was observed when DIBAL-H was replaced with trimethylaluminium. However, in the presence of catalytic quantities (0.1 equiv.) of trimethylaluminium, reactivity was restored, the anti diastereoisomer being produced (entry 8) with slightly lower stereoselectivity than with stoichiometric DIBAL-H. The same enhanced antistereoselectivity was observed when BuLi was added to $\mathbf{4 d}$ in the presence of catalytic trimethylaluminium (entry 6).

Trialkylaluminiums cannot usually be used as Lewis acids in the presence of organolithiums because of the rapid formation of ate-complexes. However, Maruoka and co-workers ${ }^{34}$ have shown that $\mathrm{Me}_{3} \mathrm{Al}$ leads to an enhancement of the reactivity of epoxy-alcohol derivatives towards organolithiums which cannot be ascribed to ate complex formation: catalytic quantities of $\mathrm{Me}_{3} \mathrm{Al}$ are essential. DIBAL-H-trialkylaluminium complexes have moreover been used to control the selectivity of additions of vinyllithiums to chiral aldehydes. ${ }^{37}$ We therefore propose that these are reactions of organolithiums catalysed (and increased in selectivity) by coordination of $\mathrm{R}_{3} \mathrm{Al}$ to the aldehyde oxygen, and that the presence of excess $\mathrm{Me}_{3} \mathrm{Al}$ leads to the formation of less reactive ate complexes. The highly selective formation of the anti diastereoisomer suggests that chelation between the amide and aldehyde carbonyl groups is not involved.

As an alternative to the use of additives, we next turned to reagents designed respectively to avoid and to promote chelation during stereoselective reactions. Alkyltitanium triisopropoxides, whose reactions with α-alkoxyaldehydes proceed via non-chelated transition states, ${ }^{15,38,39}$ were made by treating $\mathrm{MeLi}, \mathrm{BuLi}$, octynyllithium, phenyllithium and allylmagnesium bromide with $\mathrm{ClTi}(\mathrm{O} i-\mathrm{Pr})_{3}$. The outcomes of their reactions with 4 are shown in entries 19-23 of Table 2. Apart from one case, the reactions went in the same sense as most of the organolithium reactions-they were anti-selectivebut with much higher levels of stereocontrol than even the $\mathrm{Me}_{3} \mathrm{Al}$-catalysed reactions (entries 6, 8 and 9). $\mathrm{MeTi}(\mathrm{O} i-\mathrm{Pr})_{3}$ was the most selective of all, reacting with $\mathbf{4 c}, \mathbf{4 d}$ and $\mathbf{4 e}$ with $50: 1,300: 1$ and $>99: 1$ selectivity respectively (entry 19), with the octynylTi($\mathrm{O} i-\mathrm{Pr})_{3}$ performing almost as well (entry 21: the octynyltitanium species reacts with selectivity opposite to that of octynyllithium $). \mathrm{BuTi}(\mathrm{O} i-\mathrm{Pr})_{3}$ reacted selectively with the $\mathrm{N} i-\mathrm{Pr}_{2}$ aldehyde $\mathbf{4 d}$, though the selectivity with the NEt_{2} aldehyde $\mathbf{4 c}$ was less good (entry 20). The allyl reagent (entry 23), as before, was less selective, and the $\mathrm{PhTi}(\mathrm{O} i-\mathrm{Pr})_{3}$ (entry 22) exhibited a bizarre switch from anti-selectivity with $4 d$ to $s y n-$ selectivity with $\mathbf{4 c}[\mathrm{PhLi}$ had also proved unusually syn-selective (entry 7)].

The alkyltitanium triisopropoxide reactions demonstrate that the key to good anti-selectivity in the addition to 2-formyl-1naphthamides is to avoid chelation. In fact, the results obtained

(a) Non-chelation control

(b) Chelation control

(c) Effect of Lewis acid

Fig. 2 Chelation and non-celation control in the attack of organometallics on aldehydes 4.
here are among the most selective reactions ever observed for chiral aldehydes, ${ }^{15}$ and may indeed be the most selective ever of chiral aldehydes without an α-chiral centre. We attribute the exceptionally high levels of stereoselectivity to co-ordination of the bulky titanium reagent to the aldehyde as the reaction takes place, which (along with the titanium's lack of ability to chelate the amide $\mathrm{C}=\mathrm{O}$) greatly destabilises the s -cis conformation ${ }^{40}$ of the aldehyde. Reaction on the less hindered face of $\mathbf{4}$ then leads solely to the anti diastereoisomer.

Alkyltitanium trichlorides, in contrast, favour chelation. ${ }^{15,16}$ When we treated $\mathbf{4 c}$ and $\mathbf{4 d}$ with MeTiCl_{3} made from MeMgBr (entry 24) we got a moderate yield of the desired alcohols 11c with high syn-selectivity and 11d with moderate anti-selectivity, along with some by-product $\mathbf{1 7}$. When the MeTiCl_{3} was made from MeLi (entry 25), the diol $\mathbf{1 7}$ was the only product isolated. An X-ray crystal structure proved that $\mathbf{1 7}$ has an anti relationship between the hydroxy-bearing centres and the respective amide $\mathrm{C}=\mathrm{O}$ groups, and is formed as a single syn diastereoisomer of the diol. Intramolecular pinacol couplings are rarely stereoselective, ${ }^{41,42}$ but Seebach and Raubenheimer ${ }^{43}$ have described the use of a low-valent titanium reagent, formed by reduction of TiCl_{4} with BuLi, to carry out syn-selective pinacol couplings. We assume a similar low-valent titanium species is involved here.
Bearing in mind the complexity of the possible metal-amide-aldehyde-solvent aggregates likely in the reaction mixture, detailed speculation on the origin of each individual stereoselectivity is pointless. However, regarding the effect of the metal on the stereoselectivity, we draw the following general conclusions:
(a) Non-chelating metal atoms ($\mathrm{Li}, \mathrm{Ti}, \mathrm{Al}$) promote reaction through an s-trans conformation approximating to that shown in Fig. 2(a). With $\mathrm{Met}=\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{3}$ or AlMe_{3}, the size of the metal ligand means that this is very much the favoured conformation and high selectivities result.
(b) Chelating metal atoms (Mg) promote reaction through a conformation approximating to that shown in Fig. 2(b) in which the other face of the CHO group is exposed to attack.
(c) The results in the presence of Lewis acids $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, MgBr_{2} and ZnBr_{2} are harder to account for. A possible general explanation for the decrease in selectivity observed in all 8 experiments employing these additives is that Lewis acids prefer above all to coordinate to the amide carbonyl group, which is the most basic site in the molecule. This coordination (illustrated in Fig. 2(c)) increases the effective size of the $\mathrm{C}=\mathrm{O}$ group, lessening the steric distinction between O and $\mathrm{NR}^{1} \mathrm{R}^{2}$, and decreasing the ability of the amide to direct highly selective reactions. ${ }^{44}$

Lewis-acid mediated additions of allyltrimethylsilane to aldehydes and acetals

An alternative way of avoiding chelation during the additions is to use, instead of the aldehydes, the oxonium ions $\mathbf{2 0} .{ }^{43}$ These would be made from the corresponding acetals on treatment with Lewis acids, ${ }^{45}$ and would allow us to use allyltrimethylsilane as a nucleophile. ${ }^{46}$ The acetals $\mathbf{1 8}$ were formed straightforwardly from the aldehydes by refluxing with ethanol; 18a was made directly from the bromoaldehyde $\mathbf{8}^{31}$ which was first converted to the acetal ${ }^{29}$ and then to the amide by brominelithium exchange and reaction with N, N-dimethylcarbamoyl chloride (Scheme 5).

Scheme 5 Synthesis of acetals 18; (i) $\mathrm{EtOH}, p-\mathrm{TsOH}, 4 \AA$ sieves; (ii) 1. $2 \times t-\mathrm{BuLi},-78^{\circ} \mathrm{C}, \mathrm{Et}_{2} \mathrm{O}, 2 . \mathrm{ClCONMe}{ }_{2}$.

We treated each of the aldehydes $\mathbf{4 a - 4 d}$ and each of the acetals 18a-18d with allyltrimethylsilane in the presence of TiCl_{4} or SnCl_{4}. To ensure completion, 2 equiv. of Lewis acid were required with the aldehydes; one equiv. with the acetals (Scheme 6). The results of the reactions are shown in Table 3.

Unlike the previous results, changing the reagents had no effect on the sense of the selectivity, and relatively little effect on the magnitude of the selectivity. The one remarkable point is that while reactions of $\mathrm{NMe}_{2}, \mathrm{NMe} t-\mathrm{Bu}$ and NEt_{2} amides $\mathbf{4 a - c}$ and 18a-c are all syn-selective-some highly syn-selective-all the reactions with the $\mathrm{N} i-\mathrm{Pr}_{2}$ amides $\mathbf{4 d}$ and $\mathbf{1 8 d}$ are anti-selective. The fact that both the acetal-derived oxonium ions $\mathbf{2 0}$ and the aldehydes $\mathbf{4}$ react with the same selectivity in each case suggests that none of these reactions is under chelation control, and that the aldehyde is reacting in an extended s-trans conformation (this is certainly expected for $\mathbf{2 0}$, whose s-cis conformation will be particularly crowded) as shown in Fig. 3. Yet most of the reactions give the syn product-possible only if the reagent approaches the face of the aldehyde syn to the amide nitrogen. This could be explained if (i) the N-substituents (or at least the one trans to O) are relatively small (Me or Et, as they are in $\mathbf{4 a - c}$) and (ii) the amide oxygen is made larger by coordination (Fig. 3(a)). Significant complexation between the basic amide oxygen and the strongly Lewis acidic Ti or Sn reagents is to be expected, especially since two equivalents of Lewis acid were needed to ensure completion in the reactions of 4. We can then rationalise the anti-selectivity of 4 d and 18d by proposing that while the Lewis-acid complexed amide $\mathrm{C}=\mathrm{O}$ is larger than Me or $\mathrm{Et},{ }^{44}$ it is still less efficient at blocking

Table 3 Lewis acid-promoted additions of allyltrimethylsilane to aldehydes and acetals

Entry	Starting material	Lewis acid	From 4a or 18a		From 4b or 18b		From 4c or 18c		From 4d or 18d	
			Product, yield ${ }^{a}$ (\%)	Ratio ${ }^{b}$ anti:syn	Product yield ${ }^{a}$ (\%)	Ratio ${ }^{b}$ anti:syn	Product, yield ${ }^{a}$ (\%)	Ratio ${ }^{b}$ anti:syn	Product, yield ${ }^{a}$ (\%)	Ratio ${ }^{b}$ anti:syn
1	4	SnCl_{4}	15a $62^{\text {c }}$	3:97	-	-	15c 61	20:80	15d 56	92:8
2	4	TiCl_{4}	15a 57^{c}	29:71	15b 81	34:66	15c 54	12:88	15d 58	91:9
3	18	TiCl_{4}	21a 57	12:88	21b 58	10:90	21c 73	10:90	21d 47	93:7

${ }^{a}$ Isolated yield. ${ }^{b}$ Ratio in ${ }^{1} \mathrm{H}$ NMR of crude product. ${ }^{c}$ The crude product contained, additionally, traces of the lactone 22. 15a lactonised slowly on standing, and $\mathbf{2 2}$ was formed almost quantitatively from $\mathbf{1 5 a}$ after 1 week at $60^{\circ} \mathrm{C}$ in CDCl_{3}.

Fig. 3 Stereoselectivity in the additions of allyltrimethylsilane.

Scheme 6 Reactions with allyltrimethylsilane; (i) SnCl_{4} or TiCl_{4}; (ii) allyltrimethylsilane; (iii) $\mathrm{MeLi}, \mathrm{Et}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}$; (iv) NaH , EtI ; (v) CDCl_{3}, $60^{\circ} \mathrm{C}$.
reagent approach than $i-\operatorname{Pr}$ (Fig. 3(b)). The switch in selectivity does not arise from hindrance to O-complexation by one of the $\mathrm{N} i-\mathrm{Pr}$ groups, since $\mathbf{4 b}$ and $\mathbf{1 8 b}$, with an $N-t-\mathrm{Bu}$ group cis to oxygen, reacts with the opposite selectivity.

Assigning the stereochemistry of the alcohols 11-15 and ethers

 21We have previously assigned stereochemistry to the known alcohols $11 \mathrm{c}-\mathbf{e}$ and $\mathbf{1 4 c}-\mathbf{e}$ either by X-ray crystallography (14d) or by a method based on polarity and ${ }^{13} \mathrm{C}$ NMR correlations. We noted that, for alcohols of the general structure $\mathbf{1}$, syn- $\mathbf{1}$ is the more polar of the diastereoisomers, and its $\mathrm{C}=\mathrm{O}$ signal in the ${ }^{13} \mathrm{C}$ NMR is always downfield of anti-1's $\mathrm{C}=\mathrm{O}$ signal. The X-ray crystal structures (shown in Figs. 4 and 5) of anti-15c $\left(\delta_{\mathrm{C}=\mathrm{O}}=164.6 ; t_{\mathrm{R}}=5.9 \mathrm{~min}\right.$ [$2: 1$ petrol-EtOAc]; compare syn$\mathbf{1 5} \mathbf{c} \delta_{\mathrm{C}=\mathrm{O}}=169.9 ; t_{\mathrm{R}}=12.3 \mathrm{~min}$ [2:1 petrol-EtOAc]) and anti-15d ($\delta_{\mathrm{C}=\mathrm{O}}=164.4 ; t_{\mathrm{R}}=3.7 \mathrm{~min}[2: 1$ petrol-EtOAc]; compare $\operatorname{syn}-\mathbf{1 5 d}$

Fig. 4 X-Ray crystal structure of anti-15c.

Fig. 5 X-Ray crystal structure of anti-15d.
$\delta_{\mathrm{C}=\mathrm{O}}=165.6 ; t_{\mathrm{R}}=6.4 \mathrm{~min}$ [$2: 1$ petrol-EtOAc]) were determined and confirm the generality of this method for stereochemical assignment. It was therefore used to assign stereochemistry to the diastereoisomers of the remaining alcohols $\mathbf{1 2 c} \mathbf{c} \mathbf{1 2 e}, \mathbf{1 3 c}$,

13d, 15a and 15b.

The stereochemistry of the ethers $\mathbf{2 1}$ was determined by conversion of one diastereoisomer of each of the alcohols 15a-15d (syn-15a, anti-15b, syn-15c, anti-15d) to single diastereoisomers of the ethers 21a-21d using NaH , EtI, or, for 15a (which readily lactonises to 22 under these conditions) MeLi and triethyloxonium tetrafluoroborate.

Organolithium additions to imines

The final part of our investigation concerned the addition of organolithiums to the imine derivatives of 2-formyl-1-naphthamides. ${ }^{5}$ Imines typically react with higher stereoselectivity than their parent aldehydes, ${ }^{47}$ and we expected the imine 23, like the oxonium ions $\mathbf{2 0}$, to prefer the extended s-trans conformation for steric reasons. Unlike the oxonium ions, however, they could in principle still react under chelation control. 2-Alkoxyimines react under chelation control with Grignards, though their reactions with organolithiums are poorly selective. ${ }^{48}$ However, 2-(N, N-dibenzylamino)imines (unlike their parent aldehydes) react highly selectively under chelation control with organolithiums. ${ }^{49}$

Scheme 7 Synthesis and reactions of imine 23; (i) $\mathrm{MeNH}_{2}, \mathrm{H}_{2} \mathrm{O}, 60 \mathrm{~min}$; (ii) MeLi or $\mathrm{BuLi},-78^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$; (iii) $\mathrm{NH}_{4} \mathrm{Cl},-78^{\circ} \mathrm{C}$ or $\mathrm{BnBr}, 0^{\circ} \mathrm{C}$.

Fig. 6 X-Ray crystal structure of syn-24.
Table 4 Addition of organolithiums to imines 23

Entry	RLi	E^{+}	Product, yield (\%)	Ratio syn:anti	By-product, yield (\%)
1	MeLi	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathbf{2 4} 92$	$>96: 4$	-
2	BuLi	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathbf{2 5} 85$	$92: 8$	$\mathbf{2 8}^{a}$
3	MeLi	BnBr	$\mathbf{2 6} 15$	$96: 4$	$\mathbf{2 9}^{6} 64$
4	BuLi	BnBr	$\mathbf{2 7} 16$	$92: 8$	$\mathbf{3 0} 34$
Trace amounts of $\mathbf{2 8}$ were produced.					

We made the N-methylimine $\mathbf{2 3}$ from $\mathbf{4 d}$ simply by heating the aldehyde with aqueous methylamine. The imine was then treated with MeLi or BuLi in THF at $-78^{\circ} \mathrm{C}$ for $1-3 \mathrm{~h}$ and quenched with ammonium chloride to yield the amines 24 or 25. Both of the reactions were highly selective (Table 4): it was not possible to detect the minor diastereoisomer from the addition of MeLi to $\mathbf{2 3}$. The product of this reaction, syn-24 was crystalline, and its X-ray crystal structure (Fig. 6) proved the syn stereochemistry which we assume to be that of the major isomer of $\mathbf{2 5}$ too.
We made the tertiary amines $\mathbf{2 6}$ and 27 in a similar way, by quenching the reactions with BnBr . Alkylation reached completion only when the reaction mixtures were warmed to $0^{\circ} \mathrm{C}$ for $1-3 \mathrm{~h}$. The tertiary amines 26 and 27 could then be isolated in low yield, but the major products were the lactams 29 and 30, presumably formed by the mechanism outlined in Scheme 7, which outpaces the N-benzylation. Traces of related lactam 28 are formed in the reactions leading to 25 .

Considering the moderate anti-selectivity shown by additions of organolithiums to the related aldehydes $\mathbf{4}$, the syn-selectivity in these reactions is surprising. There are two possible factors at work here. Firstly, repulsion between $\mathrm{Ni}-\mathrm{Pr}_{2}$ and $\mathrm{CH}=\mathrm{NMe}$ is greater than between $\mathrm{Ni}-\mathrm{Pr}_{2}$ and $\mathrm{CH}=\mathrm{O}$, and may be favouring a conformation approaching Fig. 7(b). Secondly, chelation,
(a) Non-chelation control

(b) Chelation control

Fig. 7 Stereoselectivity in the addition of organolithiums to imines.
(a) Non-chelation control

(c) Effect of Lewis acid

$$
X=O ; A=B F_{3}, \mathrm{ZnX}_{2}, \mathrm{SnX}_{4}, \mathrm{TiX}_{4}
$$

Fig. 8
which was absent from the RLi-carbonyl additions, may become important in the late transition states of the imine additions.

Summary

The stereoselectivity of the reactions of 2-formyl-1-naphthamides is very much subject to the conformational freedom inherent in the $\mathrm{Ar}-\mathrm{CHO}$ bond. Reagents which limit this freedom, by chelation, for example, or by coordination of Lewis acids to the aldehyde, allow higher levels of selectivity to be obtained. In general, we propose three models for the reactions of aldehydes $\mathbf{4}$ and their derivatives (Fig. 8): (a), dominated by coordination of a Lewis acidic metal to the aldehyde $\mathrm{C}=\mathrm{O}$, which may lead to very high levels of selectivity in favour of the anti isomer [aldehydes $+\mathrm{RLi}, \mathrm{RLi}-\mathrm{AlR}_{3}, \mathrm{RTi}(\mathrm{Oi}-\mathrm{Pr})_{4}$]; (b), dominated by chelation of a metal ion by both carbonyl
groups, which may lead to good selectivity for the syn isomer [aldehydes + RMgX, imines + RLi]; and (c), dominated by coordination of a Lewis acid to the amide $\mathrm{C}=\mathrm{O}$ group, which, leads to lowered anti-selectivity, and with small NR_{2} to a switch to syn-selectivity [aldehydes + RMet + added Lewis acid, oxonium ions + allylSiMe ${ }_{3}+$ Lewis acid].

Experimental

General experimental details have been given before. ${ }^{1}$

1-Bromo-2-(bromomethyl)naphthalene 7

By the method of Smith et al. ${ }^{29}$ a solution of 1-bromo-2methylnaphthalene ($9.720 \mathrm{~g}, 43.96 \mathrm{mmol}$), N-bromosuccinimide ($8.398 \mathrm{~g}, 47.18 \mathrm{mmol}$), benzoyl peroxide $(0.200 \mathrm{~g}, 0.83$ $\mathrm{mmol})$ and carbon tetrachloride (100 ml) was heated to reflux for 5.5 hours under an atmosphere of nitrogen, cooled, washed with saturated aqueous sodium hydrogen carbonate (3×50 $\mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow solid which was recrystallised from petrol to give bromide $7(7.920 \mathrm{~g}, 60 \%)$ as yellow needles, mp $106-107^{\circ} \mathrm{C}$ (lit. ${ }^{29} 103-105^{\circ} \mathrm{C}$).

1-Bromo-2-formylnaphthalene 8

By a modification of the method of Hass and Bender, ${ }^{30}$ sodium $(0.667 \mathrm{~g}, 0.029 \mathrm{~mol})$ was carefully added to a flask charged with ethanol (30 ml). When the sodium had dissolved, 2-nitropropane ($2.85 \mathrm{ml}, 0.032 \mathrm{~mol}$) was added. A white precipitate formed immediately. The mixture was treated with 1-bromo-2(bromomethyl)naphthalene $7(7.920 \mathrm{~g}, 0.026 \mathrm{~mol})$ and heated to reflux for 6 h with occasional agitation of the reaction vessel. The mixture was allowed to cool to ambient temperature, treated with water (30 ml) and the ethanol was removed under reduced pressure. Ether (50 ml) was added and the solution was washed with aqueous 1 M sodium hydroxide $(2 \times 20$ $\mathrm{ml})$ and water $(2 \times 20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude product in quantitative yield. Recrystallisation from EtOAc gave the aldehyde $\mathbf{8}\left(3.877 \mathrm{~g}, 62 \%\right.$) as yellow needles, $\mathrm{mp} 115-117^{\circ} \mathrm{C}$ (lit., ${ }^{29}$ $\left.115-116^{\circ} \mathrm{C}\right)$.

2-(1-Bromo-2-naphthyl)-1,3-dioxolane 9

By the method of Hartman et al. ${ }^{32}$ a solution of 1-bromo-2formylnaphthalene $\mathbf{8}(1.507 \mathrm{~g}, 6.41 \mathrm{mmol})$, ethylene glycol (0.50 $\mathrm{ml}, 8.98 \mathrm{mmol})$, toluene- p-sulfonic acid dihydrate $(0.366 \mathrm{~g}, 1.92$ mmol) in benzene (30 ml) was heated to reflux under a DeanStark condenser overnight. The mixture was cooled, diluted with ether (30 ml), washed with 10% aqueous sodium hydroxide $(3 \times 20 \mathrm{ml})$ and water $(5 \times 20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the dioxolane $\mathbf{9}$ as a pale yellow oil ($1.636 \mathrm{~g}, 91 \%$) requiring no further purification, $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3065,2953,2886,1788 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.44(1 \mathrm{H}, J 8.4, \mathrm{ArH}), 7.92-7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.75$ $(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.70-7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.48(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 4.32-4.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 134.9, 134.5, 132.1, 128.1, 127.9, 127.5, 127.1, 124.1, 123.9, 103.4, 103.4 and 65.6; m/z (CI) $279\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$ and $281\left(86 \%, \mathrm{M}+\mathrm{H}^{+}\right) ; m / z$ (EI) $278\left(13 \%, \mathrm{M}^{+}\left[{ }^{79} \mathrm{Br}\right]\right), 280$ $\left(13 \%, \mathrm{M}^{+}\left[{ }^{81} \mathrm{Br}\right]\right), 73\left(100 \%, \mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right)$ and $199(42 \%$, $\mathrm{M}-{ }^{79} \mathrm{Br}$) (Found: M^{+}, 277.9942. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}$ requires M, 277.9943).

N, N-Dimethyl-2-(1,3-dioxolan-2-yl)-1-naphthamide 10

A solution of dioxolane $9(1.314 \mathrm{~g}, 4.71 \mathrm{mmol})$ in ether (30 ml) was added dropwise to a solution of tert-butyllithium $(6.09 \mathrm{ml}$, 10.36 mmol) in ether (50 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen to give an orange-brown solution. The mixture was stirred for an additional 35 minutes, by which time a precipitate had formed. N, N-Dimethylcarbamoyl chloride $(0.96 \mathrm{ml}$,
10.36 mmol) was added. The mixture was stirred for 5 min utes, warmed to ambient temperature and stirred for a further 1 hour. Saturated aqueous sodium hydrogen carbonate (10 ml) was added and the solvent was removed under reduced pressure. The aqueous phase was extracted with dichloromethane $(4 \times 20 \mathrm{ml})$, and the combined organic extracts were washed with brine $(50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give naphthamide $\mathbf{1 0}$ as a brown oil which was used without further purification, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $2950,2938,2889,1638 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92(1 \mathrm{H}, \mathrm{d}, J 8.5$, $\mathrm{ArH}), 7.88(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.75(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.71(1 \mathrm{H}, \mathrm{d}, J 8.5$, $\mathrm{ArH}), 7.58-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right)$, 4.30-3.90 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.5,134.0,133.6,131.3,129.0$, 128.8, 128.2, 127.1, 126.8, 124.9, 123.4, 101.7, 65.7, 65.4, 38.4 and 34.5; m / z (CI) $272\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right) ; \mathrm{m} / \mathrm{z}$ (EI) $271\left(3 \%, \mathrm{M}^{+}\right)$ and $198\left(100 \%, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ (Found: $\mathrm{M}+\mathrm{H}^{+}, 272.1294$. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $M+\mathrm{H}$, 271.1208).

N, N-Dimethyl-2-formyl-1-naphthamide 4a

Toluene-p-sulfonic acid dihydrate ($215 \mathrm{mg}, 1.03 \mathrm{mmol}$) was added to a solution of crude naphthamide $\mathbf{1 0}$ in acetone (50 ml) at ambient temperature. The mixture was stirred for 11 hours. Water (30 ml) was added and the acetone was removed under reduced pressure. The aqueous residue was extracted with ethyl acetate ($4 \times 20 \mathrm{ml}$) and the combined organic extracts were washed with saturated aqueous sodium hydrogen carbonate $(2 \times 30 \mathrm{ml})$, brine $(30 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow solid which was recrystallised from ethyl acetate to give the aldehyde $\mathbf{4 a}(885 \mathrm{mg}$, 83%) as orange prisms, $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon_{\max }\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 254$ (60320), 290 (10800), 340 (2475); mp $111-115^{\circ} \mathrm{C}$ (EtOAc); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3240,1689,1633 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.22(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}), 8.00-7.85(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.7-7.6(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.37$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.5$, 168.3, 139.9, 136.1, 129.4, 129.3, 129.1, 129.0, 128.5, 128.0, 126.1, 123.3, 38.2 and 34.7; $m / z(\mathrm{CI}) 228\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right) ; ~ m / z$ (EI) $227\left(6 \%, \mathrm{M}^{+}\right), 198(40 \%, \mathrm{M}-\mathrm{CHO}), 183(43 \%, \mathrm{M}-$ $\left.\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right), 127(100 \%)$ (Found: C, 73.9; H, 6.04; N, 6.10%. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires C, $74.0 ; \mathrm{H}, 5.7 ; \mathrm{N}, 6.2 \%$).

\boldsymbol{N}-(tert-Butyl)- \boldsymbol{N}-methyl-2-formyl-1-naphthamide 4b

sec-Butyllithium ($5.68 \mathrm{ml}, 7.39 \mathrm{mmol} ; 1.3 \mathrm{M}$ solution in hexanes) was added to a solution of naphthamide $\mathbf{3 b}^{28}(1.619 \mathrm{~g}$, 6.72 mmol) in THF (50 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After 1 h , DMF ($1.0 \mathrm{ml}, 12.9 \mathrm{mmol}$) was added. The mixture was allowed to warm to ambient temperature, quenched with water (20 ml) and stirred overnight. The THF was removed under reduced pressure and the aqueous residue was diluted with ether (60 ml). The layers were separated and the ethereal layer was washed with water $(4 \times 30 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford the crude product mixture. Purification by flash chromatography on silica gel [10:1 petrol-EtOAc] afforded the aldehyde 4b ($602 \mathrm{mg}, 33 \%$) as a colourless oil which solidified on standing, mp $122-124^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.31$ [2:1 petrolEtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2963, 2927, 2871, 2850, 1690, 1633; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.00-7.88(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.70-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.72(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.6,168.5,142.5,136.3$, $129.3,128.8,128.7,128.4,127.9,125.8,122.8,58.0,33.9$ and 28.0; m/z (CI) $270\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right) ; m / z(\mathrm{EI}) 269\left(2 \%, \mathrm{M}^{+}\right)$, $212(100 \%, \mathrm{M}-t-\mathrm{Bu})$ and $183(94 \%, \mathrm{M}-\mathrm{N}(t-\mathrm{Bu}) \mathrm{Me})$ (Found: $\mathrm{M}+\mathrm{H}^{+}$, 270.1493. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M+\mathrm{H}$, 270.1494).

Also obtained was N -(tert-butyl)-N-methyl-2-(1 -methyl-propyl)-1,2-dihydro-1-naphthamide $5(1.306 \mathrm{~g}, 65 \%)$ as a brown oil, which contained a mixture of diastereoisomers in a ratio of $56^{a}: 23^{b}: 10^{c}: 7^{d}$ (by ${ }^{1} \mathrm{H}$ NMR), $R_{\mathrm{f}} 0.31$ [$10: 1$ petrol-EtOAc];
$v_{\max }($ film $) / \mathrm{cm}^{-1} 3028,2959,2926,2873,1649 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.31-6.93(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.58\left(1 \mathrm{H}^{a}, \mathrm{~d}, J 10\right.$, $\mathrm{C} H=\mathrm{CHCH}), 6.52\left(1 \mathrm{H}^{c}, \mathrm{~d}, J 10, \mathrm{C} H=\mathrm{CHCH}\right), 6.51\left(1 \mathrm{H}^{b}, \mathrm{~d}, J\right.$ $10, \mathrm{CH}=\mathrm{CHCH}), 6.50\left(1 \mathrm{H}^{d}, \mathrm{~d}, J 10, \mathrm{CH}=\mathrm{CHCH}\right), 6.04\left(1 \mathrm{H}^{d}\right.$, dd, $J 10$ and $4, \mathrm{CH}=\mathrm{CHCH}), 5.97\left(1 \mathrm{H}^{a}\right.$, dd, $J 10$ and $5, \mathrm{CH}=$ $\mathrm{CHCH}), 5.93\left(1 \mathrm{H}^{b}, \mathrm{dd}, J 10\right.$ and $\left.2.5, \mathrm{CH}=\mathrm{C} H \mathrm{CH}\right), 4.42\left(1 \mathrm{H}^{a}, \mathrm{~d}\right.$, $\left.J 7.5, \mathrm{C} H \mathrm{CON}(t-\mathrm{Bu}) \mathrm{CH}_{3}\right), 4.33\left(1 \mathrm{H}^{c}, \mathrm{~d}, J 7.5, \mathrm{CHCON}-\right.$ $\left.(t-\mathrm{Bu}) \mathrm{CH}_{3}\right), 4.12\left(1 \mathrm{H}^{d}, \mathrm{~d}, J 11.5, \mathrm{C} H \mathrm{CON}(t-\mathrm{Bu}) \mathrm{CH}_{3}\right), 4.10$ $\left(1 \mathrm{H}^{b}, \mathrm{~d}, J 13, \mathrm{CHCON}(t-\mathrm{Bu}) \mathrm{CH}_{3}\right), 3.14\left(3 \mathrm{H}^{c}, \mathrm{~s}, \mathrm{NCH}_{3}\right), 3.09$ $\left(3 \mathrm{H}^{a}, \mathrm{~s}, \mathrm{NCH}_{3}\right), 3.02\left(3 \mathrm{H}^{b}, \mathrm{~s}, \mathrm{NCH}_{3}\right), 3.01\left(3 \mathrm{H}^{d}, \mathrm{~s}, \mathrm{NCH}_{3}\right), 2.70$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}), 1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 1.56$ $\left(9 \mathrm{H}^{b}, \mathrm{~s}, t-\mathrm{Bu}\right), 1.54\left(9 \mathrm{H}^{d}, \mathrm{~s}, t-\mathrm{Bu}\right), 1.51\left(9 \mathrm{H}^{a}, \mathrm{~s}, t-\mathrm{Bu}\right), 1.45\left(9 \mathrm{H}^{c}\right.$, $\mathrm{s}, t-\mathrm{Bu}), 1.5-1.2\left(2 \mathrm{H}^{b, c, d}, \mathrm{~m}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.94\left(3 \mathrm{H}^{a}, \mathrm{t}, J 7.5\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.75\left(3 \mathrm{H}^{a}, \mathrm{~d}, J 6.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 172.6, 134.9, 133.9, 129.5, 128.2, 128.1, 127.5, 127.3, 127.1, 127.0, 126.8, 126.6, 126.3, 126.1, 125.9, 125.6, 57.2, 47.5, 45.8, 42.7, 41.7, 40.2, 36.4, 35.8, 32.3, 28.3, 28.2, 27.6, 27.6, 25.1, 15.4, 15.3, 12.1 and $11.9 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 300\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; m / z (EI) $299\left(3 \%\right.$ M $\left.^{+}\right)$and 57 (100\%) (Found: $\mathrm{M}^{+}, 299.2248$. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}$ requires $M, 299.2249$).

N, N-Diethyl-2-formyl-1-naphthamide 4c

A solution of N, N-diethyl-1-naphthamide $\mathbf{3 c}^{2}(3.189 \mathrm{~g}, 14.03$ mmol) in THF (40 ml) was added to a stirred solution of secbutyllithium (11.85 ml of a 1.3 M solution in cyclohexane, 15.44 mmol) in THF (80 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After 1 hour at $-78^{\circ} \mathrm{C}$, the mixture was treated with a solution of DMF (5.24 ml) in THF (20 ml) and allowed to warm to ambient temperature. Water $(50 \mathrm{ml})$ was added and most of the THF was removed under reduced pressure. The residue was extracted with dichloromethane ($3 \times 50 \mathrm{ml}$). The combined organic fractions were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure at room temperature. Flash chromatography [$4: 1$ petrol-EtOAc] afforded the aldehyde $\mathbf{4 c}$ as a pale yellow solid ($2.771 \mathrm{~g}, 78 \%$), mp $65-$ $66^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.23$ [2:1 petrol-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1697$, $1630 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.0-7.5(6 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 3.77\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{NCH}_{2}\right), 3.06\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{NCH}_{2}\right)$, $143\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$, CDCl_{3}) 190.6 (CHO), $167.4\left(\mathrm{CONEt}_{2}\right), 140.8,136.2,129.5$, 129.3, 129.1, 128.6, 127.9, 126.1, 122.8 (aromatics), $43.2\left(\mathrm{CH}_{2}\right)$, $39.3\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$ and $12.9\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{CI}) 256(100 \%$, $\mathrm{M}+\mathrm{H}^{+}$); m/z (EI) $255\left(4 \%, \mathrm{M}^{+}\right)$and $226(100 \%, \mathrm{M}-\mathrm{Et})$ (Found: $\mathrm{M}+\mathrm{H}^{+}, 256.1332 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 256.1337$).

General procedure for reaction of aldehydes 4 with organolithium or Grignard reagents

A solution of the organolithium or Grignard reagent (0.98 mmol, 1.25 equiv.) was added dropwise to a stirred solution of the aldehyde $\mathbf{4}(0.784 \mathrm{mmol})$ in dry THF (5 ml) under nitrogen at $-78^{\circ} \mathrm{C}$. After 3 hours, saturated aqueous ammonium chloride $(5 \mathrm{ml})$ was added. The layers were separated and the aqueous layer extracted with diethyl ether $(2 \times 5 \mathrm{ml})$. The combined organic fractions were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure without external heating. The crude product was stored in the freezer. Analytical HPLC [1:1-8:1 petrol or hexane-EtOAc] of the crude product gave the diastereoisomeric ratios shown in Table 2; flash chromatography gave the purified products in the yields shown in Table 2, and (where necessary) preparative HPLC afforded the pure separated diastereoisomers.

In this way, with MeLi (1.4 M in $\mathrm{Et}_{2} \mathrm{O}$) or with MeMgBr (3 M in $\mathrm{Et}_{2} \mathrm{O}$, aldehyde $\mathbf{4 c}$ gave the alcohols $\mathbf{1 1 c}{ }^{2}$ aldehyde $\mathbf{4 d}^{28}$ gave the alcohols 11d, ${ }^{2}$ and the aldehyde $\mathbf{4 e}^{2}$ gave the alcohol anti-11e. ${ }^{2}$

In the same way, with $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane), with BuMgCl (2.0 M in THF), or with BuMgBr (2.0 M in THF) aldehyde 4c gave $\left(R_{a}{ }^{*} R^{*}\right)$-N,N-diethyl-2-(1^{\prime}-hydroxypentyl)-1-naphth-
amide anti-12c as a white solid, $\mathrm{mp} 85-88^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.32$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 8.4 \mathrm{~min}$ [$2: 1$ petrol-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3425(\mathrm{OH}), 1613(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.0-7.4$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.83(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $7.5, \mathrm{C} H(\mathrm{OH})$), 3.77 $\left(1 \mathrm{H}, \mathrm{m}, J 7.5, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.14(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.8(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{OH})$, $1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 1.6-1.3\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.43$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $0.91\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.3$ (CONEt ${ }_{2}$), 138.0, 132.8, 131.8, 129.4, 129.0, 128.1, 126.9, 126.2, 125.0, 123.6 (aromatics), $72.4(\mathrm{CHOH}), 43.2,39.0$, 38.8, 28.1, 22.6, 14.1 (2 peaks) and $12.9\left(\mathrm{NEt}_{2}\right.$ and n-butyl); m / z (CI) $314\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $296(30 \%, \mathrm{M}-\mathrm{OH}) ; m / z$ (EI) $313\left(8 \%, \mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 313.2040 . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M, 313.2042).
Also obtained was $\left(R_{a}{ }^{*} S^{*}\right)$-N,N-diethyl-2-(1^{\prime}-hydroxy-pentyl)-1-naphthamide syn-12c as a colourless oil, $R_{\mathrm{f}} 027$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 13.3 \mathrm{~min}$ [2:1 petrol-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3417(\mathrm{OH}), 1613(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.4$ (6 H , $\mathrm{m}, \mathrm{ArH}), 4.79(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $9.5, \mathrm{CHOH}), 3.31(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.10\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{NCH}_{2}\right)$, $2.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, $1.5-1.3\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.42\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.00$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.0\left(\mathrm{CONEt}_{2}\right), 138.6,132.7,132.6$, 129.2, 129.1, 128.3, 126.9, 126.2, 124.8, 123.8 (aromatics), 71.0 $(\mathrm{CHOH}), 43.2,38.7,35.8,28.6,22.7,14.1,13.8$ and $12.8\left(\mathrm{NEt}_{2}\right.$ and n-butyl); $m / z(\mathrm{CI}) 314\left(75 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $296(\mathrm{M}-\mathrm{OH})$; m / z (EI) $313\left(17 \%, \mathrm{M}^{+}\right)$(Found: M^{+}, 313.2038. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $M, 313.2042$).

Similarly, aldehyde $\mathbf{4 d}{ }^{28}$ gave $\left(R_{a}{ }^{*} R^{*}\right)$ - N, N-diisopropyl-2-(1'-hydroxypentyl)-1-naphthamide anti-12d as a white solid, mp 117-119 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.47$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 5.4 \min [4: 1$ petrol-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3436(\mathrm{OH}), 1612(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.91(1 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{CHOH}), 3.65(1 \mathrm{H}$, septet, $J 7.5, \mathrm{NCH}), 3.63(1 \mathrm{H}$, septet, $J 7.5$, $\mathrm{NCH}), 2.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 1.82$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{NCHCH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{NCHCH}_{3}\right), 1.51-$ $1.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.17\left(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{NCHCH}_{3}\right), 1.03(3 \mathrm{H}$, d, $\left.J 7.5, \mathrm{NCHCH}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) $169.0\left(\mathrm{CON}^{i} \mathrm{Pr}_{2}\right), 137.4,133.1,132.9,129.4,128.6$, 128.1, 126.7, 126.2, 125.2, 123.4 (aromatics), $72.0(\mathrm{CHOH})$, 51.1 (NCH), 46.2 (NCH), 38.9, 28.1, 22.5, 20.9, 20.7, 20.6, 20.4 and $14.0\left(4 \times \mathrm{CH}_{3}\right.$ and n-butyl); $m / z(\mathrm{CI}) 342\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$ and $324(\mathrm{M}-\mathrm{OH})$; m / z (EI) $341\left(18 \%, \mathrm{M}^{+}\right)$(Found: M^{+}, 341.2357. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $M, 341.2355$).

Also obtained was ($R_{a}{ }^{*} S^{*}$)-N,N-diisopropyl-2-(l^{\prime}-hydroxy-pentyl)-1-naphthamide syn-12d as a white solid, $\mathrm{mp} 99-102^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.39$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 7.5 \mathrm{~min}$ [$4: 1$ petrol-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3418(\mathrm{OH}), 1611(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.85(1 \mathrm{H}, \mathrm{dd}, J 9$ and 6, CHOH), 3.68 $(1 \mathrm{H}$, septet, $J 7, \mathrm{NCH}), 3.61(1 \mathrm{H}$, septet, $J 7, \mathrm{NCH}), 2.12(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.9-1.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{\mathrm{C}^{-}}\right.$ $\left.\mathrm{H}_{\mathrm{D}}\right), 1.81\left(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{NCHCH}_{3}\right), 1.75(3 \mathrm{H}, \mathrm{d}, J 7.5$, $\left.\mathrm{NCHCH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} H_{\mathrm{D}} \mathrm{CH}_{2}\right), 1.11(6 \mathrm{H}, \mathrm{d}, J 7.5$, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $170.2\left(\mathrm{CON}^{\mathrm{i}} \mathrm{Pr}_{2}\right)$, 137.8, 134.2, 132.8, 129.2, 128.8, 128.2, 126.7, 126.3, 124.9, 123.7 (aromatics), $71.0(\mathrm{CHOH}), 51.4,46.4,35.0$, 28.9, 22.8, 20.9, 20.6, 20.5 and $14.1\left(4 \times \mathrm{CH}_{3}\right.$ and n-butyl); m / z (CI) $342\left(9 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $324(\mathrm{M}-\mathrm{OH}) ; m / z$ (EI) 341 $\left(15 \%, \mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 341.2355 . \mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires M, 341.2355).

Similarly, the aldehyde $4 \mathbf{e}^{2}$ gave $\left(R_{a}{ }^{*}, l^{\prime} S^{*}\right)-N, N-d i(4-$ heptyl)-2-(l^{\prime}-hydroxypentyl)-1-naphthamide anti-12e as an oil, $R_{\mathrm{f}} 0.73$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 8.3 \mathrm{~min}$ [$6: 1$ hexane-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3384,2958,2932,2871,1605 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, CDCl_{3}) $7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4$ and $9, \mathrm{CHOH})$, $3.03(2 \mathrm{H}$, quintet, $J 6.5,2 \times \mathrm{NCH}), 2.5-0.6(22 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH})-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left.2 \times \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.05(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right)$,
$0.75\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 0.36\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 169.4, 138.4, 132.6, 132.1, 129.3, 128.5, 127.9, 126.1, $125.9,125.6,123.1,71.8,59.9,56.8,39.3,36.9,36.7,35.8,28.0$, 22.3, 21.7, 20.3, 20.2, 14.4, 14.0, 14.0 and 13.2; m/z (CI) 454 $\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and 436 ($17 \%, \mathrm{M}-\mathrm{OH}$); m/z (EI) 453 (3%, M^{+}) and $84\left(100 \%\right.$) (Found: $\mathrm{M}^{+}, 453.3596 . \mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{2}$ requires $M, 453.3607$).
Also obtained was $\left(R_{a}{ }^{*}, l^{\prime} R^{*}\right)-N, N-d i(4-$ heptyl $)-2-\left(l^{\prime}-\right.$ hydroxypentyl)-1-naphthamide syn-12e as a colourless oil, R_{f} 0.69 [$2: 1$ petrol-EtOAc]; $t_{\mathrm{R}} 21.7 \mathrm{~min}$ [$6: 1$ hexane-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3408,2958,2932,2871,1605 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.88(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 9.5 , $\mathrm{CHOH}), 3.05(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}), 2.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}\right.$ and $\mathrm{NCHCH}_{\mathrm{A}}-$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.79(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.73-0.53(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ $(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 2 \times \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4 \times \mathrm{NCHCH}_{2}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 0.97$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 0.65\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 0.50\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.0,138.6,134.1,132.4,129.3,128.9$, 128.1, 126.3, 126.1, 125.0, 123.3, 70.7, 60.4, 57.2, 36.9, 36.8, $36.4,35.4,33.5,28.9,22.8,21.7,20.4,20.3,14.4,14.1,13.7$ and 13.5; m/z (CI) $454\left(14 \%, \mathrm{M}+\mathrm{H}^{+}\right)$, $438\left(100 \%, \mathrm{M}-\mathrm{CH}_{3}\right)$ and $436(51 \%, \mathrm{M}-\mathrm{OH})$ (Found: M^{+}, 453.3596. $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{2}$ requires $M, 453.3607$).

Also obtained was N, N-di(4-heptyl)-2-(hydroxymethyl)-1naphthamide $\mathbf{1 6}$ as a colourless oil, $R_{\mathrm{f}} 0.53$ [$2: 1$ petrol-EtOAc]; $t_{\mathrm{R}} 2.9 \mathrm{~min}$ [6:1 hexane-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3412,2959$, 2932, 2871, 1603; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88-7.78(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.57-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right)$, $4.54\left(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.10-2.92(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH})$, $2.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.64-0.80\left(13 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 3 \times\right.$ $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{NCHCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}$), $1.06(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.01\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{3}\right), 0.64(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{NCH}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.43\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $170.6,135.4,133.8,132.5,129.3,128.9,128.1$, 127.1, 126.3, 126.2, 125.0, 63.9, 60.1, 57.0, 37.0, 36.8, 36.2, 34.9, 21.7, 20.2, 20.0, 14.4, 13.7 and 13.3; m/z (CI) $398(20 \%$, $\mathrm{M}+\mathrm{H}^{+}$) and $382\left(100 \%, \mathrm{M}-\mathrm{CH}_{3}\right) ; m / z($ EI $) 397\left(1 \%, \mathrm{M}^{+}\right), 86$ (100%), 84 (100%) and 49 (100%) (Found: $\mathrm{M}+\mathrm{H}^{+}, 398.3055$. $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 398.3059$).

Also obtained was remaining starting material $\mathbf{4 e}(30 \%)$.
In the same way, with octynyllithium, prepared from oct-1yne ($0.15 \mathrm{ml}, 0.98 \mathrm{mmol}, 1.3$ equiv.) in THF (0.5 ml) and n-BuLi (0.57 ml of a 1.6 M solution in hexanes, $0.91 \mathrm{mmol}, 1.2$ equiv.) at $-78^{\circ} \mathrm{C}$ stirred together for 30 min and added to the solution of the aldehyde by a cannula, aldehyde $\mathbf{4 d}^{2}$ gave $\left(R_{a}{ }^{*}, l^{\prime} R^{*}\right)$ -N,N-diisopropyl-2-(1'-hydroxynon-2'-ynyl)-1-naphthamide anti-13d as a colourless oil, $R_{\mathrm{f}} 0.51$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 5.1$ $\min \left[4: 1\right.$ hexane-EtOAc]; $v_{\max } / \mathrm{cm}^{-1} 3388$, 3057, 2959, 2931, $2870,2858,1612 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.84(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.77$ $(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.64(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.57$ $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}), 2.87(1 \mathrm{H}, \mathrm{d}, J 5, \mathrm{CHOH}), 2.23(2 \mathrm{H}, \mathrm{td}, J 7.0$ and $\left.1.9, \mathrm{C} \equiv \mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 1.77\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.69$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$, $1.43-1.19\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right)$, $0.98(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH} 3), 0.89\left(3 \mathrm{H}, \mathrm{t}, J 6.5,\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.8,134.2,133.6,133.0,129.4,128.6$, $128.0,126.6,126.4,125.3,125.0,87.9,80.3,62.8,51.2,46.2$, 31.2, 28.5, 28.4, 22.4, 20.7, 20.4, 20.4, 20.3, 18.9 and 13.9; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 394\left(27 \%, \mathrm{M}+\mathrm{H}^{+}\right), 376(100 \%, \mathrm{M}-\mathrm{OH})$ and 284 ($87 \%, \mathrm{M}-\mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$) (Found: M^{+}, 393.2673. $\mathrm{C}_{26} \mathrm{H}_{35^{-}}$ NO_{2} requires $M, 393.2668$).

Also obtained was $\left(R_{a}^{*}, l^{\prime} S^{*}\right)$-N,N-diisopropyl-2-($1^{\prime}-$ hydroxynon-2'-ynyl)-1-naphthamide syn-13d as a white solid, $\mathrm{mp} 90-92^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.39$ [$2: 1$ petrol-EtOAc]; $t_{\mathrm{R}} 12.1 \mathrm{~min}[4: 1$ hexane-EtOAc]; $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon_{\text {max }}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 234$ (66630), 282 (7965); $v_{\text {max }} / \mathrm{cm}^{-1} 3312,2960,2931,2870,2858,1608 ; \delta_{\mathrm{H}}(300$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.89(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 7.8(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.51$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.65(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CHOH}), 4.07(1 \mathrm{H}, \mathrm{d}, J 1.5$, $\mathrm{OH}), 3.64(1 \mathrm{H}$, septet, $J 6.5, \mathrm{NCH}), 3.54(1 \mathrm{H}$, septet, $J 6.5$, $\mathrm{NCH}), 2.29\left(2 \mathrm{H}, \mathrm{td}, J 7.0\right.$ and $\left.1.9, \mathrm{CCCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 1.78$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.55(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 1.48-1.22\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$, $1.10\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.0,\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.4,135.3,133.2$, $132.9,128.8,128.7,128.2,126.7,126.4,125.0,124.8,87.8,79.0$, $62.3,51.4,46.4,31.2,28.5,28.4,22.4,20.8,20.5,20.5,20.4,18.8$ and 13.9; m/z (CI) $394\left(13 \%, \mathrm{M}+\mathrm{H}^{+}\right)$, $276(100 \%, \mathrm{M}-\mathrm{OH})$ and $284\left(64 \%, \mathrm{M}-\mathrm{CC}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right)$ (Found: M^{+}, 393.2662. $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{2}$ requires $M, 393.2668$).
In the same way, with $\mathrm{PhLi}(1.8 \mathrm{M}$ in hexane-ether) or with $\mathrm{PhMgBr}\left(1.0 \mathrm{M}\right.$ in THF), aldehyde $\mathbf{4 c}$ gave the alcohols $\mathbf{1 4 c},{ }^{2}$ the aldehyde $\mathbf{4 d}{ }^{28}$ gave the alcohols $\mathbf{1 4 d}{ }^{2}$ and the aldehyde $\mathbf{4 e}{ }^{2}$ gave the alcohol syn-14e. ${ }^{2}$

In the same way, with allylMgBr (1.0 M in THF) the aldehyde 4 c gave $\left(R_{a}{ }^{*} R^{*}\right)$-N,N-diethyl-2-(l^{\prime}-hydroxybut-3'-enyl)-1-naphthamide anti-15c as a white solid, $\mathrm{mp} 107-110^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.55$ $(E t O A c) ; t_{\mathrm{R}} 5.9 \mathrm{~min}$ [2:1 petrol-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3402$ $(\mathrm{OH}), 1611(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4(6 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 5.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.14(1 \mathrm{H}, \mathrm{d}, J 17.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} H^{\text {rans }} \mathrm{H}\right), 5.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH} H^{\text {cis }}\right), 4.74$ $(1 \mathrm{H}, \mathrm{t}, J 3.5, \mathrm{CHOH}), 3.63\left(2 \mathrm{H}, \mathrm{ABX}_{3}, J_{\mathrm{Ax}}=J_{\mathrm{BX}}=7, \mathrm{NCH}_{2}\right)$, $3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.47$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.31(3 \mathrm{H}$, $\left.\mathrm{t}, J 7, \mathrm{CH}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $164.6\left(\mathrm{CONEt}_{2}\right), 132.5,130.1,128.3,127.3,124.8,124.4$, 123.7, 122.5, 121.7, 120.4, 119.0, 114.5 (Ar and $\mathrm{C}=\mathrm{C}$), 66.1 $(\mathrm{CHOH}), 39.4,38.7,34.5\left(\mathrm{CH}_{2}\right), 9.5\left(\mathrm{CH}_{3}\right)$ and $8.4\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI) $298\left(37 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $280(\mathrm{M}-\mathrm{OH}) ; m / z$ (EI) 297 $\left(1 \%, \mathrm{M}^{+}\right)$(Found: M^{+}, 297.1735. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M, 297.1729).

Also obtained was $\left(R_{a}{ }^{*} S^{*}\right)$-N,N-diethyl-2-(l^{\prime}-hydroxybut-3'-enyl)-1-naphthamide syn-15c as a colourless oil, $R_{\mathrm{f}} 0.54$ [EtOAc]; $t_{\mathrm{R}} 12.3 \mathrm{~min}$ [2:1 petrol-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3407$ $(\mathrm{OH}), 1610(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.88\left(1 \mathrm{H}\right.$, ddt, $J 17.5,11$ and $\left.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{dd}$, $J 17.5$ and $\left.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} H^{\text {trans }} \mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CH} H^{c i s}\right), 4.87(1 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{CHOH}), 3.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right.$ $\left.\mathrm{CH}_{3}\right), 3.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.09$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.60(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.40\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.9\left(\mathrm{CONEt}_{2}\right), 137.7,134.8$, 132.7, 129.2, 129.1, 128.3, 126.9, 126.3, 124.8, 123.8, 117.5 (Ar and $\mathrm{C}=\mathrm{C}), 70.8(\mathrm{CHOH}), 43.3,40.6,38.6\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$ and $12.8\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 298\left(64 \%, \mathrm{M}+\mathrm{H}^{+}\right), 256\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ and $280(\mathrm{M}-\mathrm{OH}) ; m / z$ (EI) $297\left(3 \%, \mathrm{M}^{+}\right)$(Found: M^{+}, 297.1735. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $M, 297.1729$).

Similarly, the aldehyde $\mathbf{4 d}{ }^{28}$ gave the alcohol $\left(R_{a}{ }^{*} R^{*}\right)-N, N-$ diisopropyl-2-(1'-hydroxybut-3'-enyl)-1-naphthamide anti-15d as a white solid, $\mathrm{mp} 135-139^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.53$ [1:1 petrol-EtOAc]; t_{R} 3.7 min [2:1 petrol-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3421(\mathrm{OH}), 1611$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.91(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C} H=\mathrm{CH}_{2}\right), 5.27\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} H^{\text {rrans }} \mathrm{H}\right), 5.23$ $\left(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 3 , $\mathrm{CHOH}), 3.62(2 \mathrm{H}$, septet, $J 6.5,2 \times \mathrm{NCH}), 2.75(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $1.79\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.13(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.5, \mathrm{CH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.4$ (CONiPr $)$, 131.9, 130.3, 128.6, 128.4, 124.8, 124.0, 123.6, 122.2, 121.7, $120.5(\mathrm{Ar}), 118.9,114.4(\mathrm{C}=\mathrm{C}), 66.0(\mathrm{CHOH}), 46.7$ $\left(\mathrm{CH}_{2}\right), 41.6(\mathrm{NCH}), 39.5(\mathrm{NCH}), 16.5\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right), 16.1$ $\left(\mathrm{CH}_{3}\right)$ and $15.9\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 326\left(33 \%, \mathrm{M}+\mathrm{H}^{+}\right), 284$ $\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ and $280(\mathrm{M}-\mathrm{OH}) ; m / z$ (EI) $325\left(2 \%, \mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 325.2043 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $M, 325.2042$).

Also obtained was the alcohol ($\left.R_{a}{ }^{*} S^{*}\right)$ - N, N-diisopropyl-2-(1'-hydroxybut-3'-enyl)-1-naphthamide syn-15d as a colourless oil, $R_{\mathrm{f}} 0.47$ [$1: 1$ petrol-EtOAc]; $t_{\mathrm{R}} 6.4 \mathrm{~min}$ [2:1 petrol-EtOAc];
$v_{\max }($ film $) / \mathrm{cm}^{-1} 3398(\mathrm{OH}), 1608(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.97(1 \mathrm{H}$, ddt, $J 17,10$ and 7 , $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.23\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.1.5, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} H^{\text {trans }} \mathrm{H}\right)$, $5.14\left(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 4.93(1 \mathrm{H}, \mathrm{t}, J 5, \mathrm{CHOH})$, $3.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.63(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}), 2.88(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.79(3 \mathrm{H}, \mathrm{d}$, $\left.J 7, \mathrm{CH}_{3}\right), 1.66\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.09\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.6(\mathrm{CONiPr} 2), 132.5,130.5,129.7,128.4$, 124.7, 124.3, 123.7, 122.3, 121.9, 120.4 (Ar), 119.3, 112.9 (C=C), $66.1(\mathrm{CHOH}), 46.9\left(\mathrm{CH}_{2}\right), 42.0(\mathrm{NCH}), 35.4(\mathrm{NCH}), 16.4$ $\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right)$ and $16.0\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 326$ ($64 \%, \mathrm{M}+\mathrm{H}^{+}$), $284\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ and $280(\mathrm{M}-\mathrm{OH}) ; m / z(\mathrm{EI})$ $325\left(7 \%, \mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 325.2042 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M, 325.2042).

General procedure for addition of organolithium or Grignard reagents in the presence of hexamethylphosphoramide or boron trifluoride-diethyl ether

Hexamethylphosphoramide ($0.55 \mathrm{ml}, 3.136 \mathrm{mmol}$) or boron trifluoride-diethyl ether ($0.10 \mathrm{ml}, 0.784 \mathrm{mmol}$) was added dropwise to a stirred solution of the aldehyde $4(200 \mathrm{mg}, 0.784$ mmol) and in dry THF (5 ml) under nitrogen at $-78^{\circ} \mathrm{C}$. After 40 minutes at $-78^{\circ} \mathrm{C}$, a solution of organolithium or Grignard reagent (0.94 mmol) was added dropwise. After 3 hours at $-78^{\circ} \mathrm{C}$, saturated aqueous ammonium chloride (5 ml) was added and the products were analysed and purified as described above.

General procedure for addition of Grignard reagents in the presence of magnesium dibromide-diethyl ether or zinc dibromide

Magnesium bromide-diethyl ether ($203 \mathrm{mg}, 0.784 \mathrm{mmol}$) or zinc dibromide ($177 \mathrm{mg}, 0.784 \mathrm{mmol}$) was added to a stirred solution of the aldehyde $4(0.784 \mathrm{mmol})$ in dry dichloromethane (5 ml) under nitrogen at $-78^{\circ} \mathrm{C}$. After 40 minutes at $-78^{\circ} \mathrm{C}, n$-butylmagnesium chloride (0.43 ml of a 2.0 M solution in THF, 0.861 mmol) was added dropwise. After 3 hours at $-78^{\circ} \mathrm{C}$, saturated aqueous ammonium chloride (5 ml) was added and the products were analysed and purified as described above.

Additions of organolithiums to aldehyde 4 d in the presence of trimethylaluminium or DIBAL-H

Trimethylaluminium ($20 \mu \mathrm{l}$ of a 2 M solution in hexane) was added to a stirred solution of the n-butyllithium (0.34 ml of a 1.6 M solution in hexane) in THF (50 ml) under nitrogen at $-78^{\circ} \mathrm{C}$. The aldehyde $\mathbf{4 d}(112 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added immediately and the mixture stirred for 1 hour at $-78^{\circ} \mathrm{C}, 2.5$ hours at $0^{\circ} \mathrm{C}$, and 1 h at room temperature, poured into 1 M HCl and extracted with dichloromethane $(2 \times 60 \mathrm{ml})$. The extracts were washed with sodium bicarbonate solution and with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Analytical HPLC of the crude mixture showed a ratio of 93.8:6.2 of anti-12d:syn-12d. Purification by flash chromatography [$4: 1$ petrol-EtOAc] gave the alcohols $\mathbf{1 2 d}$ ($73 \mathrm{mg}, 56 \%$).

In a similar way, oct-1-ynyllithium (prepared as above from n-butyllithium (0.26 ml of a 1.6 M solution in hexane) and oct-1-yne ($70 \mu \mathrm{l}, 0.5 \mathrm{mmol}$) and trimethylaluminium ($17 \mu \mathrm{l}$ of a 2 M solution in hexane) gave a crude product containing (by analytical HPLC) a mixture of $93: 7$ anti-13d:syn-13d. Purification by flash chromatography [$4: 1$ petrol-EtOAc] gave the alcohol ($75 \mathrm{mg}, 66 \%$) as a colourless oil.

In a similar way, oct-1-ynyllithium (prepared as above from n-butyllithium (1 ml of a 1.6 M solution in hexane) and oct-1yne ($0.23 \mathrm{ml}, 1.6 \mathrm{mmol}$) and diisobutylaluminium hydride (1.6 ml of a 1 M solution in hexane) gave a crude product containing (by analytical HPLC) a mixture of $>99: 1$ anti-13d $:$ syn $-\mathbf{1 3 d}$. Purification by flash chromatography [$4: 1$ petrol-EtOAc] gave the alcohol ($75 \mathrm{mg}, 50 \%$) as a colourless oil

General procedure for the addition of alkyltitanium triisopropoxides

Chlorotitanium triisopropoxide ($0.41 \mathrm{ml}, 0.41 \mathrm{mmol} ; 1 \mathrm{M}$ solution in dichloromethane) was added to a solution of alkyllithium or Grignard reagent $(0.37 \mathrm{mmol})$ in THF (2.4 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$, treated with a solution of aldehyde $\mathbf{4}$ $(0.27 \mathrm{mmol})$ in THF (1.7 ml) and stirred for a further 4 hours. The mixture was poured into ice-cold aqueous 2 M hydrochloric acid (15 ml) and diethyl ether (30 ml). Most of the solvent was removed under reduced pressure without external heating, and the aqueous residue was extracted with dichloromethane $(5 \times 20 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure without external heating to give the crude product. Analytical HPLC [$2: 1$ hexane-EtOAc] gave the diastereoisomeric ratios (see Table 2), and the crude product was purified by flash chromatography on silica gel [$2: 1$ petrol-EtOAc] to give the product alcohols in the yields shown in Table 2.
In this way, with methyllithium (1.4 M solution in ether) the aldehyde $\mathbf{4 c}$ gave alcohols 11c; aldehyde 4d gave alcohols 11d and aldehyde 4e gave alcohols 11e.
Similarly, with n-butyllithium ($0.44 \mathrm{ml}, 0.70 \mathrm{mmol} ; 1.6 \mathrm{M}$ solution in ether), aldehyde 4 c gave alcohols 12c and aldehyde 4d gave alcohols 12d.

Similarly, with oct-1-ynyllithium, prepared as described above, aldehyde 4 d gave the alcohols $\mathbf{1 3 d}$ and aldehyde $\mathbf{4 c}$ gave ($R_{a}{ }^{*}, l^{\prime} R^{*}$)-N,N-diethyl-2-($1^{\prime}-$ hydroxynon-2'-ynyl)-1-naphthamide anti-13c as a pale yellow oil, $R_{\mathrm{f}} 0.23$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 5.2$ [2:1 hexane-EtOAc]; $v_{\text {max }} / \mathrm{cm}^{-1} 3378,3057$, 2954, 2932, $2869,2858,1612 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.70$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.62 ($1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}$), $7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.49$ $(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHOH}), 3.80-3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.35(1 \mathrm{H}$, br m, OH), $3.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.14(2 \mathrm{H}, \mathrm{td}, J 6$ and 1.5 , $\left.\mathrm{C} \equiv \mathrm{CCH}_{2}\right), 1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 1.34(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.3-1.15\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}$, $\left.\mathrm{t}, J 7, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{t}, J 7,\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) $169.5,135.2,132.9,132.6,129.5,129.1,128.1,126.9$, $126.5,125.5,125.0,87.6,79.9,63.8,43.6,39.0,31.2,28.5,28.4$, 22.4, 19.0, 14.0, 13.4 and $12.8 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 366\left(1 \%, \mathrm{M}+\mathrm{H}^{+}\right)$, $348(18 \%, \mathrm{M}-\mathrm{OH}), 256\left(2 \%, \mathrm{M}-\mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right)$ and 74 (100%) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 366.2435. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 366.2433$).

Also obtained was ($\left.R_{a}{ }^{*}, I^{\prime} S^{*}\right)$-N,N-diethyl-2-($l^{\prime}-$ hydroxy-non-2'-ynyl)-1-naphthamide syn-13c as a pale yellow oil, $R_{\mathrm{f}} 0.12$ [2:1 petrol-EtOAc]; $t_{\mathrm{R}} 9.1$ [2:1 hexane-EtOAc]; $v_{\text {max }} / \mathrm{cm}^{-1}$ 3426, 3058, 2955, 2931, 2870, 2858, 1610; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.89(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.82(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.78(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.53(1 \mathrm{H}, \mathrm{t}, J 2$, $\mathrm{CHOH}), 3.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}^{-}}\right.$ $\left.H_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.03\left(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.02(1 \mathrm{H}, \mathrm{q}, J 7.2$, $\left.\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{3}\right), 2.22\left(2 \mathrm{H}, \mathrm{dt}, J 7\right.$ and $\left.2, \mathrm{C}=\mathrm{CCH}_{2}\right), 1.46(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$), $1.34\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.35-1.15$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $0.81\left(3 \mathrm{H}, \mathrm{t}, J 7,\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.5,135.9$, 133.0, 132.2, 129.3, 128.9, 128.3, 127.1, 126.5, 124.8, 124.6, 88.0, 78.6, 62.7, 43.3, 39.2, 31.2, 28.5, 28.4, 22.5, 18.8, 14.0, 13.9 and $12.9 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 348(9 \%, \mathrm{M}-\mathrm{OH}), 256(2 \%, \mathrm{M}-$ $\left.\mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right)$ and 74 (100%).
Also obtained was recovered aldehyde $\mathbf{4 c}(42 \mathrm{mg}, 23 \%)$.
Similarly, with phenyllithium (1.8 M solution in cyclo-hexane-ether), aldehyde $\mathbf{4 c}$ gave alcohols $\mathbf{1 4 c}$; aldehyde 4 d gave alcohols 14d and aldehyde 4e gave alcohols 14e.
Similarly, with allylmagnesium bromide (1 M solution in ether), aldehyde 4 c gave alcohol 15 c and aldehyde 4 d gave alcohols 15d.

Additions of methyltitanium trichloride

Titanium tetrachloride ($1.13 \mathrm{ml}, 1.13 \mathrm{mmol} ; 1 \mathrm{M}$ solution in
dichloromethane) was added to a stirred solution of methylmagnesium bromide $(0.43 \mathrm{ml}, 1.13 \mathrm{mmol} ; 3 \mathrm{M}$ solution in diethyl ether) or methyllithium ($0.81 \mathrm{ml}, 1.13 \mathrm{mmol}, 1.4 \mathrm{M}$ solution in diethyl ether) in THF (7.3 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After 10 minutes, a solution of aldehyde $4(240 \mathrm{mg}, 0.64 \mathrm{mmol})$ in THF (5.9 ml) was added. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for a further 2 hours. The mixture was poured into ice-cool aqueous 2 M hydrochloric acid (15 ml) and diethyl ether (30 ml). Most of the solvent was removed under reduced pressure without external heating, and the aqueous residue was extracted with dichloromethane ($5 \times 20 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure without external heating to give the crude product. Analytical HPLC [$2: 1$ hexane-EtOAc] gave the diastereoisomeric ratio (see Table 2), and the crude product was purified by flash chromatography on silica gel [2:1 petrolEtOAc] to give the product alcohols in the yield shown in Table 2.

In this way, the aldehyde $\mathbf{4 c}$ and MeMgBr gave the alcohols 11c along with $\left(R_{a}{ }^{*}\right)$-N,N-diethyl-2-(($\left.1 R^{*}, 2 R^{*}\right)-2-\left\{1-\left[\left(R_{a}{ }^{*}\right)-\right.\right.$ (diethylamino) carbonyl]-2-naphthyl $\}$-1,2-dihydroxyethyl)-1naphthamide $17(\mathrm{R}=\mathrm{Et})(59 \mathrm{mg}, 12 \%)$ as a colourless oil, R_{f} 0.17 [1:1 petrol-EtOAc]; $v_{\max } / \mathrm{cm}^{-1} 3272,3058$, 2974, 2936, 2899, 2855, 2816, 2765, 1601; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.76(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.65(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.51(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.45(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 6.85(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 6.01(2 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 5.21$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 3.92\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.53(2 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{3}\right), 2.95\left(4 \mathrm{H}, \mathrm{q}, J 7.5,2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $1.39\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.6,135.1,132.7,132.2,128.3,127.6$, 126.8, 126.6, 126.2, 124.3, 74.1, 45.5, 43.7, 39.7, 14.0 and 13.0; m / z (CI) $513\left(4 \%, \mathrm{M}+\mathrm{H}^{+}\right), 256\left(4 \%, \mathrm{M}-\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}\right)$ and 74 (100%) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 513.2754. $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M+\mathrm{H}, 513.2753$).

With MeLi, only $\mathbf{1 7}(\mathrm{R}=\mathrm{Et})$ was obtained.
In the same way, the aldehyde $\mathbf{4 d}$ and MeMgBr gave the alcohols 11d along with $\left(R_{a}^{*}\right)$-N,N-diisopropyl-2-($\left(1 R^{*}, 2 R^{*}\right)$ -2- $\left\{1-\left[\left(R_{a}{ }^{*}\right)\right.\right.$-(diisopropylamino) carbonyl $\left.]-2-n a p h t h y l\right\}-1,2-$
dihydroxyethyl)-1-naphthamide $17(\mathrm{R}=i-\mathrm{Pr})(30 \mathrm{mg}, 13 \%)$ as a colourless oil, $v_{\max } / \mathrm{cm}^{-1} 3408,3060,3014$, 2977, 2930, 2873, $2855 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.50-7.30$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.74(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 5.97(2 \mathrm{H}, \mathrm{d}, J 4.5$, $\mathrm{CHOH}), 5.22(2 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{CHOH}), 3.63(2 \mathrm{H}$, septet, $J 7$, $2 \times \mathrm{NCH}), 3.43(2 \mathrm{H}$, septet, $J 6.5,2 \times \mathrm{NCH}), 1.71(12 \mathrm{H}, \mathrm{d}, J 7$, $\left.4 \times \mathrm{CH}_{3}\right), 1.03\left(6 \mathrm{H}, \mathrm{d}, J 6.5,2 \times \mathrm{CH}_{3}\right), 0.94(6 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.2 \times \mathrm{CH}_{3}\right) ; \quad \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.0,134.9,133.1,132.6$, $128.3,128.2,127.2,126.5,126.2,126.2,124.6,74.9,51.9,46.7$, 21.3, 20.8, 20.5 and $20.1 ; m / z(\mathrm{CI}) 569\left(27 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $284\left(100 \%, \mathrm{M}-\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}\right)$ (Found: $\mathrm{M}+\mathrm{H}^{+}, 569.3382$. $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M+\mathrm{H}, 569.3379$).
With MeLi, only $17(\mathrm{R}=i-\mathrm{Pr})$ was obtained.

1-Bromo-2-(diethoxymethyl)naphthalene 19

1-Bromo-2-formylnaphthamide $\mathbf{8}$ ($1.155 \mathrm{~g}, 4.91 \mathrm{mmol}$), toluene- p-sulfonic acid monohydrate ($131 \mathrm{mg}, 0.69 \mathrm{mmol}$), $4 \AA$ molecular sieves ($c a .1 \mathrm{~g}$) and ethanol $(15 \mathrm{ml})$ were heated to reflux for 60 hours and cooled. 10% Aqueous sodium hydroxide $(15 \mathrm{ml})$ was added, the ethanol was removed under reduced pressure, and diethyl ether $(40 \mathrm{ml})$ was added. The layers were separated and the organic portion was washed with 10% aqueous sodium hydroxide ($2 \times 15 \mathrm{ml}$), water ($3 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give an oil. Purification by flash chromatography on neutral alumina [$4: 1$ petrol-EtOAc] afforded the acetal $19(634 \mathrm{mg}$, 42%) as a white solid, $R_{\mathrm{f}} 0.32$ [$80: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$)EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3061,2976,2926,2896,2878 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.42(1 \mathrm{H}, J 8.5, \mathrm{ArH}), 7.85(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.61$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OEt})_{2}\right), 3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
$3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.32\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 136.2, 134.6, 132.0, 128.0, 127.7, 127.4, 127.3, 126.8, 124.9, 123.3, 102.2, 62.6 and $15.2 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 308\left(1 \%, \mathrm{M}^{+}\right)$and 49 (100%) (Found: M^{+}, 308.0410. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Br}$ requires M, 308.0412).

N, N-Dimethyl-2-(diethoxymethyl)-1-naphthamide 18a

A solution of the bromoacetal 19 in diethyl ether (15 ml) was added dropwise over a period of 15 minutes to a solution of tert-butyllithium ($2.33 \mathrm{ml}, 3.96 \mathrm{mmol}$; 1.7 M solution in pentane) in diethyl ether $(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The resulting brown solution was stirred for 70 minutes. N, N-Dimethylcarbamoyl chloride $(0.83 \mathrm{ml}, 9.01 \mathrm{mmol})$ was added in one portion and the mixture stirred for further 10 minutes, warmed to ambient temperature over a period of 60 minutes. Saturated aqueous sodium hydrogen carbonate (5 ml) was added to the orange solution. The layers were separated and the organic portion was washed with saturated aqueous sodium hydrogen carbonate (20 ml) and brine ($2 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown oil which was distilled (Kugelrohr, bp $243^{\circ} \mathrm{C}$, 0.5 mmHg) to afford the acetal $\mathbf{1 8 a}(353 \mathrm{mg}, 47 \%)$ as a colourless oil, $v_{\max }($ film $) / \mathrm{cm}^{-1} 2974,2932,2874,1629 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.89(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.80(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 7.73(1 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.67\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OEt})_{2}\right), 3.88-3.52$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.27$ $\left(6 \mathrm{H}, \mathrm{t}, J 7.1,2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.8,133.3$, 133.2, 133.1, 129.0, 128.6, 128.1, 127.0, 126.5, 124.7, 123.5, $100.4,62.8,62.5,38.3,34.5,15.1$ and $15.0 ; \mathrm{m} / \mathrm{z}$ (CI) 256 (100%, M - OEt); m / z (EI) 301 ($7 \%, \mathrm{M}^{+}$), 256 (21%, M - OEt) and 127 (100\%) (Found: $\mathrm{M}^{+}, 310.1673 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires M, 310.1678).

N-(tert-Butyl)- N-methyl-2-(diethoxymethyl)-1-naphthamide 18b

By the method given for $\mathbf{1 9}$, a mixture of the aldehyde $\mathbf{4 b}$ (206 g , 0.78 mmol), toluene- p-sulfonic acid monohydrate ($15 \mathrm{mg}, 0.08$ mmol), $4 \AA$ A molecular sieves ($c a .0 .5 \mathrm{~g}$) and ethanol (10 ml) were heated to reflux for 2 days. Purification by flash chromatography on neutral alumina [15:1 petrol-EtOAc] afforded the acetal $\mathbf{1 8 b}(229 \mathrm{mg}, 87 \%)$ as a white solid, $R_{\mathrm{f}} 0.38$ [$4: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$)-EtOAc]; mp $116-120^{\circ} \mathrm{C}$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3060$, 2975, 2926, 2876, 1698, 1632; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $7.90-7.75$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.58-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.67\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OEt})_{2}\right)$, $3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.54(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{3}\right), 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.72(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.29$ $\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 170.0, 135.6, 133.4, 132.2, 128.7, 128.2, 128.1, 126.8, 126.4, 124.6, 123.5, 100.3, 62.9, 62.7, 57.2, 33.8, 28.1, 15.2 and 15.1.

N, N-Diethyl-2-(diethoxymethyl)-1-naphthamide 18c

In the same way, aldehyde $\mathbf{4 c}(1.329 \mathrm{~g}, 5.21 \mathrm{mmol})$, toluene- p sulfonic acid monohydrate ($99 \mathrm{mg}, 0.52 \mathrm{mmol}$), $4 \AA$ molecular sieves $(c a .1 \mathrm{~g})$ and ethanol $(20 \mathrm{ml})$ were heated to reflux for 24 hours. The crude product was purified by flash chromatography on neutral alumina [$4: 1$ petrol-EtOAc] and afforded the acetal 18c ($875 \mathrm{mg}, 51 \%$) as a pale yellow oil, $R_{\mathrm{f}} 0.36$ [4:1 petrolEtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2975,2932,2876,1631 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.0-7.7(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.5(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.56(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}(\mathrm{OEt})_{2}\right), 4.0-3.4\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 3.2-3.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.44\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.24(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.4,168.8$, 133.3, 133.0, 129.1, 128.7, 128.1, 126.7, 126.5, 125.1, 123.6, $100.5,63.1,62.5,43.2,38.8,15.1,15.1,13.7$ and $12.9 ; \mathrm{m} / \mathrm{z}$ (CI) $330\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $284(0.3 \%, \mathrm{M}-\mathrm{OEt}) ; m / z(\mathrm{EI})$ $226\left(14 \%, \mathrm{M}-\mathrm{CH}(\mathrm{OEt})_{2}\right), 284(31 \%, \mathrm{M}-\mathrm{OEt}), 300(15 \%$, $\mathrm{M}-\mathrm{Et}$) and 183 (100%) (Found: $\mathrm{M}+\mathrm{H}^{+} 330.2060 . \mathrm{C}_{20} \mathrm{H}_{27^{-}}$ NO_{3} requires $M+\mathrm{H}, 330.2069$).

N, N-Diisopropyl-2-(diethoxymethyl)-1-naphthamide 18d

In the same way, aldehyde $\mathbf{4 d}(1.120 \mathrm{~g}, 3.96 \mathrm{mmol})$, toluene- p sulfonic acid monohydrate ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$), $4 \AA$ molecular sieves $(c a .1 \mathrm{~g})$ and ethanol $(25 \mathrm{ml})$ were heated to reflux for 3 days. The crude product was purified by flash chromatography on neutral alumina [7:1 petrol-EtOAc] to give the acetal 18d ($834 \mathrm{mg}, 59 \%$) as a white solid, $R_{\mathrm{f}} 0.54$ [4:1 petrol-EtOAc]; mp $135-141^{\circ} \mathrm{C}$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2975,2931,2897,2874,1629$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92-7.76(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.56-7.50(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 5.56\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OEt})_{2}\right), 4.08(1 \mathrm{H}, \mathrm{dq}, J 14$ and 7 , $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.70-3.40\left(5 \mathrm{H}, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}, \mathrm{CH}_{2}, 2 \times \mathrm{NCH}\right)$, $1.81\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.32$ $\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.13(3 \mathrm{H}$, d, $\left.J 6.5, \mathrm{NCHCH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right) ; ~ \delta_{\mathrm{c}}(75 \mathrm{MHz}$, CDCl_{3}) 168.5, 134.3, 133.4, 132.6, 128.9, 128.5, 128.1, 126.5, $125.2,123.9,100.6,65.8,63.5,62.3,51.2,46.2,20.7,20.5,20.4$, 20.3, 15.1 and $15.0 ; \mathrm{m} / \mathrm{z}$ (CI) $358\left(6 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $312(100 \%$, $\mathrm{M}-\mathrm{OEt}) ; m / z$ (EI) 312 ($5 \%, \mathrm{M}-\mathrm{OEt}$) and 183 (100%) (Found: C, $73.76 ; \mathrm{H}, 8.66 ; \mathrm{N}, 3.82 \% \mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{3}$ requires C, 73.9; H, 8.7; N, 3.9\%).

General procedure for the allylation of aldehydes with allyltrimethylsilane in the presence of $\mathbf{S n C l}_{4}$

A solution of the aldehyde $4(0.784 \mathrm{mmol})$ in dry dichloromethane (3 ml) was added dropwise to a solution of stannic chloride $(1.57 \mathrm{ml}$ of a 1.0 M solution in dichloromethane, 1.568 mmol) under nitrogen at $-78^{\circ} \mathrm{C}$. After 1 hour, allyltrimethylsilane ($0.12 \mathrm{ml}, 0.862 \mathrm{mmol}$) was then added in one portion. After stirring at $-78^{\circ} \mathrm{C}$ for a further 2 hours the mixture was allowed to warm to $0^{\circ} \mathrm{C}$, water (3 ml) was added, the layers were separated, and the aqueous layer extracted with dichloromethane (two 5 ml portions). The combined organic fractions were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated under reduced pressure without external heating, analysed and purified as described above.

General procedure for allylation of aldehydes with allyltrimethylsilane in the presence of TiCl_{4}

Titanium tetrachloride (0.53 ml of a 1.0 M solution in dichloromethane, 0.530 mmol) was added in one portion to a stirring solution of aldehyde $44(0.265 \mathrm{mmol})$ in dry dichloromethane $(1.69 \mathrm{ml})$ under nitrogen at $-78^{\circ} \mathrm{C}$. After 10 minutes, allyltrimethylsilane ($0.1 \mathrm{ml}, 0.636 \mathrm{mmol}$) was added dropwise to the deep red solution over a 15 minute period and the mixture was stirred for 3.5 hours at $-78^{\circ} \mathrm{C}$. Saturated aqueous ammonium chloride (2 ml) was added, the layers were separated, and the aqueous layer extracted with dichloromethane (two 5 ml portions). The combined organic fractions were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated under reduced pressure without external heating, analysed and purified as described above.

By both of these methods, aldehyde 4a gave $\left(R_{a}^{*}, l^{\prime} R^{*}\right)$ -N,N-dimethyl-2-(1'-hydroxybut-3'-enyl)-1-naphthamide anti15a, $t_{\mathrm{R}} 8.8 \mathrm{~min}\left[1: 1\right.$ hexane-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2972$, 2933, 2844, 2736, 1702, 1619; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.67(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.91(1 \mathrm{H}, \mathrm{ddt}$, $J 17,10$ and $\left.6, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.24\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{CH}=\mathrm{CH}^{\text {rans }} \mathrm{H}\right), 5.21$ $\left(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 4.82(1 \mathrm{H}, \mathrm{dd}, J 9$ and $4, \mathrm{CHOH})$, $3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right.$ $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 170.1, 137.1, 134.4, 132.7, 131.6, 129.1, 129.0, 128.1, 127.1, 126.2, 124.6, 123.7, 118.8, 71.0, 43.4, 38.3 and $34.6 ; \mathrm{m} / \mathrm{z}$ (CI) $270\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $252(17 \%, \mathrm{M}-\mathrm{OH})$ (Found: $\left.\mathrm{M}+\mathrm{H}^{+}, 269.1412\right) . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 269.1416$).

Also obtained was ($R_{a}{ }^{*}, I^{\prime} S^{*}$)-N,N-dimethyl-2-(1^{\prime}-hydroxy-but-3'-enyl)-1-naphthamide syn-15a, $t_{\mathrm{R}} 11.2 \mathrm{~min}[1: 1$ hexaneEtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3377, 3061, 2975, 2929, 2851, 1614; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.87(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.83\left(1 \mathrm{H}\right.$, ddt, $J 17,10.5$ and $\left.7, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.15\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.1.5, \mathrm{CH}=\mathrm{C} H^{\text {rans }} \mathrm{H}\right), 5.08(1 \mathrm{H}, \mathrm{d}, J 10.5$,
$\left.\mathrm{CH} H^{c i s}\right), 4.89(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $6.5, \mathrm{CHOH}), 3.39(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\mathrm{OH}), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH})-$ $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $170.5,137.8,134.5,132.6,132.3,129.1,128.9,128.2,127.1$, $126.2,124.4,123.8,117.7,70.9,40.9,38.6$ and $34.5 ; \mathrm{m} / \mathrm{z}$ (CI) $270\left(92 \%, \mathrm{M}+\mathrm{H}^{+}\right), 252(37 \%, \mathrm{M}-\mathrm{OH})$ and $242(100 \%$, $\mathrm{M}-\mathrm{CH}=\mathrm{CH}_{2}$) (Found: C, $76.20 ; \mathrm{H}, 6.85 ; \mathrm{N}, 4.37 \% ; \mathrm{M}+\mathrm{H}^{+}$, 269.1415. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires C, $75.8 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.2 \% ; M+\mathrm{H}$, 269.1416).

The ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture indicated traces of 22, and samples of 15a in deuterochloroform lactonised slowly on standing. For example, a solution of alcohols 15a (67 $\mathrm{mg}, 0.25 \mathrm{mmol})$ in deuterochloroform (0.6 ml) was allowed to stand for 1 week at $60^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure to afford a brown oil which was purified by flash chromatography on silica gel [4:1 petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$)EtOAc] to afford 3-allyl-1,3-dihydrobenzo[e]isobenzofuran-1one $22(54 \mathrm{mg}, 96 \%)$ as a colourless oil, $R_{\mathrm{f}} 0.27$ [$4: 1$ petrolEtOAc]; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3073,2917,1749 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $9.06(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 8.18(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 8.02(1 \mathrm{H}, \mathrm{d}$, $J 8, \mathrm{ArH}), 7.78(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.56(1 \mathrm{H}$, d, $J 8.5, \mathrm{ArH}), 5.84\left(1 \mathrm{H}, \mathrm{ddt}, J 17,10.5\right.$ and $\left.6.5, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.63$ $\left(1 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{ArCH}(\mathrm{OCO}) \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 5.26(1 \mathrm{H}, \mathrm{d}, J 17.2$, $\left.\mathrm{CH}=\mathrm{C} H^{\text {rans }} \mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 2.90(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 170.5, 150.9, 135.3, 133.3, 131.2, 129.2, 128.9, 128.4, 127.2, 123.5, 120.4, 119.6, 118.5, 79.4 and 38.3; m/z (CI) 225 $\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right) ; m / z$ (EI) $224\left(12 \%, \mathrm{M}^{+}\right)$and $183(100 \%$, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$) (Found: M^{+}, 224.0838. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$ requires M, 224.0837).
By the same methods, aldehyde $\mathbf{4 b}$ gave $\left(R_{a}{ }^{*}, l^{\prime} S^{*}\right)$ - N - (tert-butyl)-N-methyl-2-(1-hydroxybut-3-enyl)-1-naphthamide anti15b as a white solid, $\mathrm{mp} 103-107^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.21[1: 1$ petrolEtOAc]; $t_{\mathrm{R}} 18.9$ [8:1 hexane-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3398-$ 3262, 2977, 2960, 2916, 1614; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.86(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.75(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.65(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.58-$ $7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.86\left(1 \mathrm{H}\right.$, ddt, $J 17,10.5$ and $\left.1, \mathrm{C} H=\mathrm{CH}_{2}\right)$, $5.18\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.1, \mathrm{CH}=\mathrm{CH}^{\text {trans }} \mathrm{H}\right), 5.10(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $\left.1, \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 4.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 2.84-2.70 (1H, m, CH $\left.\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.68-$ $2.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.69(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 170.1, 137.4, 135.4, 135.3, 129.2, 128.8, 127.7, 126.7, 124.9, 124.3, 118.1, 71.3, 58.1, 41.2, 34.8 and 28.6; m/z (CI) 312 $\left(43 \%, \mathrm{M}+\mathrm{H}^{+}\right), 294(100 \%, \mathrm{M}-\mathrm{OH}), 270\left(27 \%, \mathrm{M}-\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{CH}=\mathrm{CH}_{2}$) and $255(36 \%, \mathrm{M}-\mathrm{MeN} t$-Bu); m / z (EI) $311(1 \%$, M^{+}) and $49(100 \%)$ (Found: $\mathrm{M}^{+}, 311.1888 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires M, 311.1885).
Also obtained was ($R_{a}{ }^{*}, l^{\prime} R^{*}$)-N-(tert-butyl)-N-methyl-2-(1-hydroxybut-3-enyl)-1-naphthamide syn-15b as a white solid, $\mathrm{mp} 139-141^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.21$ [1:1 petrol-EtOAc]; $t_{\mathrm{R}} 36.2$ [8:1 hexane-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3432-3415,3058,2977,2960$, 2923,$1615 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.80(1 \mathrm{H}$, m, ArH), 7.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$), 7.59-7.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.93 (1 H , $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.32-5.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.92(1 \mathrm{H}, \mathrm{dt}$, $J 9$ and $J 3.5, \mathrm{CHOH}), 2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.83-2.72(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{\mathrm{A}_{\mathrm{A}}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.63(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{OH}), 2.53(1 \mathrm{H}, \mathrm{dt}, J 14$ and $\left.8.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.71(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 171.0, 136.8, 135.2, 134.5, 133.4, 129.5, 129.0, 128.7, 127.6, 126.6, 125.1, 124.3, 119.3, 71.7, 57.9, 44.0, 34.4 and 28.7; $m / z(\mathrm{CI}) 312\left(19 \%, \mathrm{M}+\mathrm{H}^{+}\right), 294(26 \%, \mathrm{M}-\mathrm{OH}), 270(29 \%$, $\left.\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), \quad 225(42 \%, \quad \mathrm{M}-\mathrm{MeN}-t-\mathrm{Bu})$ and 88 (100%); m / z (EI) $311\left(1 \%, \mathrm{M}^{+}\right)$and 49 (100%) (Found: M^{+}, 311.1886. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $M, 311.1885$).

By the same methods, aldehyde 4 c gave the alcohols 15 c and aldehyde $\mathbf{4 d}$ gave the alcohols $\mathbf{1 5 d}$.

General procedure for allylation of acetals with allyltrimethylsilane in the presence of TiCl_{4}
Titanium tetrachloride (0.35 ml of a 1.0 M solution in dichloro-
methane, 0.35 mmol) was added in one portion to a stirred solution of acetal $\mathbf{1 8}(0.265 \mathrm{mmol})$ in dry dichloromethane (1.7 $\mathrm{ml})$ under nitrogen at $-78^{\circ} \mathrm{C}$. After 10 minutes, allyltrimethylsilane ($0.1 \mathrm{ml}, 0.64 \mathrm{mmol}$) was added dropwise over a 15 min period to the deep red solution. The mixture was stirred for 3 hours at $-78^{\circ} \mathrm{C}$. Saturated aqueous ammonium chloride (5 ml) was added, the layers were separated, and the aqueous layer was extracted with dichloromethane ($5 \times 10 \mathrm{ml}$). The combined organic fractions were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated under reduced pressure without external heating, analysed and purified as described above.
($\left.R_{\mathrm{a}}{ }^{*}, 1^{\prime} \boldsymbol{R}^{*}\right)$ - and $\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} S^{*}\right)$ - N, N-Dimethyl-2-(1^{\prime}-ethoxybut3^{\prime} 'enyl)-1-naphthamide anti-21a and syn-21a. By this method, acetal 18a gave an inseparable (by flash chromatography or HPLC) mixture of the ethers 21a. Purification by flash chromatography on silica gel [2:1 petrol-EtOAc] afforded a mixture of anti-21a and syn-21a as a colourless oil, $R_{\mathrm{f}} 0.31$ [2:1 petrol-EtOAc]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3059,3012,2977,2870,2855$, 1750, 1631; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ anti-21a: $7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.68(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.99(1 \mathrm{H}, \mathrm{ddt}, J 17,10$ and $\left.7, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.47(1 \mathrm{H}, \mathrm{dd}, J 8$ and 5, CHOEt), $3.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.82$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.25(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); syn-21a: $7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.68$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.55 $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.89\left(1 \mathrm{H}, \mathrm{ddt}, J 17,10\right.$ and $\left.6.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.1$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH} \mathrm{H}_{2}\right), 4.62(1 \mathrm{H}, \mathrm{dd}, J 8$ and $5.5, \mathrm{CHOEt}), 3.4(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.71(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.17(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.7,169.6,136.7$, $136.5,135.0,133.1,132.7,129.1,129.0,128.8,128.2,128.1$, $127.0,127.0,126.2,126.1,124.6,124.5,124.0,123.5,116.8$, $116.6,79.2,77.9,64.5,64.2,41.8,41.7,38.6,38.1,34.5,34.4$, 15.2 and $15.2 ; \mathrm{m} / \mathrm{z}$ (CI) $298\left(86 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and 242 (100%); m/z (EI) 256 ($\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$) and 183 (31\%) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 298.1814. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $M+\mathrm{H}$, 298.1807). Assignments in the ${ }^{1} \mathrm{H}$ NMR spectrum were made by COSY.
$\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} R^{*}\right)$ - and $\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} S^{*}\right)$ - N-(tert-Butyl)- N-methyl-2-($\mathbf{1}^{\prime}$ -ethoxybut-3'-enyl)-1-naphthamide anti-21b and syn-21b. In the same way, acetal 18b gave a crude product which was purified by flash chromatography on silica gel [7:1 petrol-EtOAc] to give a mixture of the two ethers anti-21b and syn-21b as a white solid. Preparative HPLC [16:1 hexane-EtOAc] gave anti-21b as a sticky white solid, $R_{\mathrm{f}} 0.25$ [7:1 petrol (bp $40-60^{\circ} \mathrm{C}$)-EtOAc]; $t_{\mathrm{R}} 7.4 \min \left[16: 1\right.$ hexane-EtOAc]; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3057,2975$, $2918,2871,1634 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.87(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.76$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.00$ $\left(1 \mathrm{H}, \mathrm{ddt}, J 17,10\right.$ and $\left.7, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.14(1 \mathrm{H}$, dd, $J 17$ and 2 , $\left.\mathrm{CH}=\mathrm{C} H^{\text {rrans }} \mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 4.55(1 \mathrm{H}, \mathrm{dd}$, $J 9$ and 4, CHOEt), $3.50-3.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.78(3 \mathrm{H}, \mathrm{s}$, NCH_{3}), 2.68-2.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $1.70(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, $1.26\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.0,135.8$, 135.3, 134.8, 132.8, 129.0, 128.3, 128.1, 126.9, 126.0, 124.4, $123.4,116.4,79.1,64.5,57.1,41.9,33.5,28.1$ and $15.2 ; \mathrm{m} / \mathrm{z}$ (CI) $340\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $294(12 \%, \mathrm{M}-\mathrm{OEt})$ (Found: $\mathrm{M}+\mathrm{H}^{+}, 340.2275 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 340.2276$).

Also obtained was $\operatorname{syn}-\mathbf{2 1 b}$ as a white solid, $\mathrm{mp} 105-107^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.25$ [7:1 petrol-EtOAc]; $t_{\mathrm{R}} 9.0 \mathrm{~min}$ [16:1 hexane-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2973,2955,2919,2870,2850,1626 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.74(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.67(1 \mathrm{H}$, $\mathrm{d}, J 8.5, \mathrm{ArH}), 7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.93(1 \mathrm{H}, \mathrm{ddt}, J 17,10$ and $\left.7.5, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.17-5.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.68(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 5, CHOEt), $3.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $1.70(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.16\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 170.2, 135.5, 135.3, 132.8, 128.8, 128.4, 128.1, 126.9, 126.1, 124.5, 123.9, 116.6, 64.1, 57.3, 41.7, 34.1, 29.6, 28.0 and 15.1; m/z (CI) $340\left(55 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $294(100 \%, \mathrm{M}-\mathrm{OEt})$
(Found: $\mathrm{M}+\mathrm{H}^{+}$, 340.2276. $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $M+\mathrm{H}$, 340.2276).
$\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} R^{*}\right)$ - and ($\left.R_{\mathrm{a}}{ }^{*}, 1^{\prime} S^{*}\right)$ - N, N-Diethyl-2-(1^{\prime}-ethoxybut- $3^{\prime}-$ enyl)-1-naphthamide anti-21c and syn-21c. In the same way, acetal 18c gave a crude product which was purified by flash chromatography on silica gel [7:1 petrol-EtOAc] to give a mixture of the two ethers $\mathbf{2 1 c}$ which were separated by preparative HPLC [2:1 hexane-EtOAc] to afford anti-21c as a colourless oil, $R_{\mathrm{f}} 0.47$ [3:2 petrol-EtOAc]; $t_{\mathrm{R}} 28.4$ [16:1 hexane-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3058,2975,2934,2895,2873,1632 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.77(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.70(1 \mathrm{H}$, d, $J 8.5, \mathrm{ArH}), 7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.99(1 \mathrm{H}, \mathrm{ddt}, J 17,10$ and $\left.6.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.14\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{CH}=\mathrm{C} H^{\text {rrans }} \mathrm{H}\right), 5.07(1 \mathrm{H}, \mathrm{d}$, $\left.J 10.2, \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 4.49(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $4, \mathrm{CHOEt}), 3.96$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.43(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{-}\right.$ $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.42(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 168.7, 136.6, 135.1, 132.7, 132.4, 129.4, 128.7, 128.0, $126.6,126.0,124.9,123.4,116.5,79.1,64.6,42.8,41.9,38.4$, 15.3, 14.0 and 12.7; m/z (CI) $326\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and 280 $(22 \%, \mathrm{M}-\mathrm{OEt}) ; m / z$ (EI) $325\left(3 \%, \mathrm{M}^{+}\right)$and $284(100 \%$, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$) (Found: M^{+}, 325.2042. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $M, 325.2042$).

Also obtained was syn-21c as a colourless oil, $R_{\mathrm{f}} 0.47$ [3:2 petrol-EtOAc]; $t_{\mathrm{R}} 34.6$ [16:1 hexane-EtOAc]; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3058, 2974, 2934, 2896, 2875, 1630; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.74(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.65(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.50(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 5.94\left(1 \mathrm{H}, \mathrm{ddt}, J 17.5,10\right.$ and $7.5, \mathrm{CH}=\mathrm{CH}_{2}$), 5.08 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{dd}, J 9$ and $4, \mathrm{CHOEt}), 4.00$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{3}\right), 3.39(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\right.$ $\left.\mathrm{CH}_{2}\right), 2.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.38\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right)$, $1.11\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.0\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $168.9,136.1,135.2,133.4,132.8,128.8,128.0,126.6,126.2$, $125.1,123.9,116.6,64.1,43.0,41.6,38.4,38.1,15.1$ and 13.8 ; m / z (CI) $326\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $280(29 \%, \mathrm{M}-\mathrm{OEt}) ; m / z$ (EI) $325\left(3 \%, \mathrm{M}^{+}\right)$and $284\left(100 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 325.2044 . \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $\mathrm{M}, 325.2042$).
$\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} R^{*}\right)$ - and $\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} S^{*}\right)$ - N, N-Diisopropyl-2-(1^{\prime}-ethoxy-but-3'-enyl)-1-naphthamide anti-21d and syn-21d. In the same way, acetal 18d gave a crude product which was purified by flash chromatography on silica gel [7:1 petrol-EtOAc] to yield a mixture of the two naphthamides 21d. Preparative HPLC [25:1 hexane-EtOAc] gave $\left(R_{a}{ }^{*}, 1^{\prime} R^{*}\right)-N, N$-diisopropyl-2-(1^{\prime} -ethoxybut-3'-enyl)-1-naphthamide syn-21d as a white solid, mp $112-113{ }^{\circ} \mathrm{C} ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3073,3057,2975,2931,2895,2872$, $1627 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.71(1 \mathrm{H}, \mathrm{d}$, $J 8.5, \mathrm{ArH}), 7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.01(1 \mathrm{H}, \mathrm{ddt}, J 17,10$ and 6.5 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.15\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.2, \mathrm{CH}=\mathrm{C} H^{\text {trans }} \mathrm{H}\right), 5.07(1 \mathrm{H}$, $\left.\mathrm{d}, J 10, \mathrm{CH}=\mathrm{CH} H^{c i s}\right), 4.59(1 \mathrm{H}, \mathrm{dd}, J 9$ and $3, \mathrm{CHOEt}), 3.68$ $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}), 3.50\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.81(3 \mathrm{H}, \mathrm{d}$, $\left.J 7, \mathrm{NCHCH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right), 1.05(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.\mathrm{NCHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.5,136.3,135.4,133.3$, $132.7,129.5,128.2,128.0,126.4,125.9,124.9,123.3,116.4$, $79.4,64.5,50.9,46.1,42.0,21.2,21.1,20.6,20.5$ and 15.5 ; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 354\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and 308 ($15 \%, \mathrm{M}-\mathrm{OEt}$); m / z (EI) $353\left(3 \%, \mathrm{M}^{+}\right), 312\left(32 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 270 (100%) (Found: M^{+}, 353.2346. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires M, 353.2355).

Also obtained was $\left(R_{a}{ }^{*}, 1^{\prime} R^{*}\right)-N, N$-diisopropyl-2-(1^{\prime} -ethoxybut-3'-enyl)-1-naphthamide anti-21d as a white solid, mp $125-128^{\circ} \mathrm{C}$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3084,2977,2959,2926,2871,2856$, $1625 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.86(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.66(1 \mathrm{H}, \mathrm{d}$, $J 8.5, \mathrm{ArH}), 7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.10(1 \mathrm{H}$, ddt, $J 17,10.5$ and $\left.6.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.61(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $2, \mathrm{CHOEt}), 3.63(2 \mathrm{H}$, septet, $J 7,2 \times \mathrm{NCH}), 3.43(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.30(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.6.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right), 1.72$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{NCHCH}_{3}\right), 1.14\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.05\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{NCHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7,135.5$, 134.4, 133.0, 129.1, 128.5, 128.0, 126.5, 126.2, 125.3, 124.0, 116.3, 76.8, 64.1, 50.8, 46.3, 41.3, 21.1, 20.9, 20.5, 20.3 and 15.1; m / z (CI) $354\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $308(40 \%, \mathrm{M}-\mathrm{OEt})$; m / z (EI) $353\left(3 \%, \mathrm{M}^{+}\right), 312\left(25 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 49/84/86 (100\%) (Found: M^{+}, 353.2347. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires M, 353.2355).

Correlation of stereochemistry by ethylation of alcohols 15 . Method 1

Methyllithium ($0.40 \mathrm{ml}, 0.63 \mathrm{mmol}$; 1.6 M solution in diethyl ether) and triethyloxonium tetrafluoroborate ($144 \mathrm{mg}, 0.76$ $\mathrm{mmol})$ were added to a solution of the alcohol syn-15a (170 mg , 0.63 mmol) in THF (8 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After 10 min , the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After 20 minutes water (10 ml) was added to the white suspension. The mixture was extracted with dichloromethane ($5 \times 10 \mathrm{ml}$), and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure without external heating to give the crude product. Purification by flash column chromatography on silica gel [2:1 petrol (bp $40-60^{\circ} \mathrm{C}$)-EtOAc] afforded syn-21a ($120 \mathrm{mg}, 64 \%$) as a colourless oil. Also obtained was lactone $22(36 \mathrm{mg}, 25 \%)$.

Correlation of stereochemistry by ethylation of alcohols 15 . Method 2

Sodium hydride ($16 \mathrm{mg}, 2.05 \mathrm{mmol}$) was added to a solution of the alcohol anti-15b ($15 \mathrm{mg}, 0.05 \mathrm{mmol}$) in DMF (2 ml) at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After 30 minutes, ethyl iodide ($0.30 \mathrm{ml}, 3.75 \mathrm{mmol}$) was added to the yellow solution. After 4 h , saturated aqueous ammonium chloride (5 ml) was added and the mixture was extracted with dichloromethane $(3 \times 10$ $\mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure without external heating to give a crude product which was purified by flash column chromatography on silica gel [7:1 petrol-EtOAc] to yield anti-21b ($15 \mathrm{mg}, 94 \%$) as a colourless oil.

By method 2, the alcohol syn-15c ($31 \mathrm{mg}, 0.10 \mathrm{mmol}$) in THF (1.4 ml) gave, after 9 h , the ethyl ether syn - $\mathbf{2 1 c}$ ($30 \mathrm{mg}, 89 \%$) as a colourless oil.

By method 2, the alcohol anti-15d ($445 \mathrm{mg}, 1.40 \mathrm{mmol}$) gave, after 16 h , a crude product which was purified by flash chromatography [3:1 petrol-EtOAc] to yield anti-21d (467 mg , 97%) as a white solid.

N, N-Diisopropyl-2-(N-methylformimidoyl)-1-naphthamide 23

Aldehyde $\mathbf{4 d}^{28}(1.564 \mathrm{~g}, 5.23 \mathrm{mmol})$ was added to 40% aqueous methylamine ($15.7 \mathrm{~g}, 203 \mathrm{mmol}$) to form a white suspension which clarified on heating on a steam bath for 60 minutes. The solution was cooled to ambient temperature and the white precipitate isolated by filtration and dissolved in dichloromethane. This solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a white solid which was recrystallised from ethyl acetate to afford the imine $23(1.308 \mathrm{~g}$, 80%) as very fine white needles, $\mathrm{mp} 188-190^{\circ} \mathrm{C}$ (ethyl acetate); $\lambda_{\max } / \mathrm{nm}\left(\varepsilon_{\max }\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 254$ (47080), 290 (11670); $v_{\max }(\mathrm{film}) /$ $\mathrm{cm}^{-1} 3058,3021,2988,2965,2937,2906,2867,2770,1639$, $1619 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.57\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C} H=\mathrm{NCH}_{3}\right), 8.12$ ($1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{ArH}$), $7.94-7.82(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $3.67(1 \mathrm{H}$, septet, $J 7, \mathrm{NCH}), 3.59\left(3 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CH}=\mathrm{NCH}_{3}\right)$, $3.54(1 \mathrm{H}$, septet, $J 6.5, \mathrm{NCH}), 1.82\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right)$, $1.75\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right), 1.03$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.3,160.0$, 137.5, 134.4, 129.3, 128.9, 128.2, 128.2, 127.4, 127.0, 125.3, 122.8, 51.3, 48.6, 46.4, 20.8, 20.6 and $20.4 ; m / z(\mathrm{CI}) 297(100 \%$,
$\left.\mathrm{M}+\mathrm{H}^{+}\right) ; m / z(\mathrm{EI}) 296\left(5 \%, \mathrm{M}^{+}\right)$and $196\left(\mathrm{M}-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$ (Found: C, $77.14 ; \mathrm{H}, 8.34 ; \mathrm{N}, 9.42 \% . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ requires C, 77.0; H, 8.1; N, 9.5\%).

($R_{\mathrm{a}}{ }^{*}, 1^{\prime} R^{*}$)- and ($R_{\mathrm{a}}{ }^{*}, 1^{\prime} S^{*}$)- N, N-Diisopropyl-2-[1'-(methyl-amino)ethyl]-1-naphthamide anti-24 and syn-24

Methyllithium ($0.48 \mathrm{ml}, 0.77 \mathrm{mmol} ; 1.6 \mathrm{M}$ solution in diethyl ether) was added dropwise over 5 minutes to a solution of imine $23(189 \mathrm{mg}, 0.64 \mathrm{mmol})$ in THF (7 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The resulting yellow solution was stirred for 3 hours, saturated aqueous ammonium chloride (5 $\mathrm{ml})$ was added and the mixture warmed to ambient temperature. The THF was removed under reduced pressure without external heating and the aqueous residue was extracted with dichloromethane $(5 \times 10 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure at ambient temperature to give the crude product, which contained (by ${ }^{1} \mathrm{H}$ NMR) $>96: 4$ syn-24: anti-24. Purification by flash chromatography on silica gel [1:1 petrolEtOAc $+1 \%$ triethylamine] gave syn-24 ($183 \mathrm{mg}, 92 \%$) as a pale brown solid. Recrystallisation from ethyl acetate afforded the amine as pale brown rhombic prisms, mp $163-165^{\circ} \mathrm{C}(\mathrm{EtOAc})$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3316,3052,3009,2968,2934,2899,2873,2799$, $1617 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.87-7.80(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.59(1 \mathrm{H}$, d, J 8.7, ArH), $7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.96(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{ArCH}-$ $\left.\left(\mathrm{NHCH}_{3}\right) \mathrm{CH}_{3}\right), 3.63(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $1.80\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.72\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.49$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{ArCH}\left(\mathrm{NHCH}_{3}\right) \mathrm{CH}_{3}\right), 1.13(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.\mathrm{NCHCH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 169.1, 137.6, 134.5, 132.6, 129.3, 128.4, 127.9, 126.4, 125.9, 125.1, 123.4, 55.6, 50.8, 46.1, 34.2, 21.2, 20.9, 20.8, 20.4 and 20.4; m/z (CI) 314 ($100 \%, \mathrm{M}+\mathrm{H}^{+}$) (Found: C, 76.60; H, 9.04; $\mathrm{N}, 9.13 \% . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ requires C, 76.9; $\mathrm{H}, 9.0 ; \mathrm{N}, 9.0 \%$).
Heating syn-24 in CDCl_{3} for 5 days at $60^{\circ} \mathrm{C}$ produced enough anti-24 to allow identification of its $\mathrm{NCH}_{3}{ }^{1} \mathrm{H}$ NMR signal at $\delta 2.43(3 \mathrm{H}, \mathrm{s})$.

$\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} R^{*}\right)$ - and $\left(R_{\mathrm{a}}{ }^{*}, 1^{\prime} S^{*}\right)$-N,N-Diisopropyl-2-[1'-(methyl-amino)pentyl]-1-naphthamide anti-25 and syn-25

In the same way, imine $\mathbf{2 3}$ ($89 \mathrm{mg}, 0.30 \mathrm{mmol}$) and n-butyllithium ($0.23 \mathrm{ml}, 0.36 \mathrm{mmol} ; 1.6 \mathrm{M}$ solution in hexanes) gave, after 1 h , a crude product containing a ratio of $92: 8$ syn25: anti-25. Purification by flash chromatography on silica gel [1:1 petrol-EtOAc $+1 \%$ triethylamine] gave $\operatorname{syn}-25(187 \mathrm{mg}$, 85%) as a pale brown solid, $\mathrm{mp} 110-111^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.29$ [1:1 petrol (bp $40-60{ }^{\circ} \mathrm{C}$)-EtOAc $+1 \%$ triethylamine]; $\quad v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3326, 3057, 2961, 2933, 2872, 2859, 2797, 1624; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.83(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.54(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.48(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and $\left.4.5, \mathrm{C} H\left(\mathrm{NHCH}_{3}\right)\right), 2.30(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{3}\right), 1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80(3 \mathrm{H}, \mathrm{d}$, $\left.J 7, \mathrm{NCHCH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right), 1.60(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.12$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right)$, $0.94\left(3 \mathrm{H}, \mathrm{t}, J 7,\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.1,137.2$, $134.8,132.5,129.4,128.2,127.9,126.3,125.9,125.1,123.8$, $60.9,50.9,46.1,35.1,33.9,29.6,23.0,21.0,20.9,20.5,20.3$ and 14.0; m / z (CI) $355\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right), 324\left(1 \%, \mathrm{M}-\mathrm{NHCH}_{3}\right)$ and $254\left(8 \%, \mathrm{M}-\mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}\right) ; m / z$ (EI) $354\left(2 \%, \mathrm{M}^{+}\right)$and 196 (100%) (Found: M^{+}, 354.2677. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$ requires M, 354.2671).

Also obtained was 3-butyl-2-methyl-2,3-dihydro-1 H-benzo[e]-isoindol-1-one $28(10 \mathrm{mg}, 4 \%), R_{\mathrm{f}} 0.60[1: 1$ petrol-EtOAc + 1% triethylamine]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3056,2956,2930,2862$, $1679 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.30(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 8.01(1 \mathrm{H}$, d, $J 8.4, \mathrm{ArH}), 7.94(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH})$, $7.58(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.51(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 4.47(1 \mathrm{H}$, $\left.\mathrm{t}, J 4.3, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.09(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.04$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{t}, J 7.5,\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$,
$0.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.5$, 145.3, 133.0, 131.9, 129.2, 127.9, 127.7, 126.6, 126.3, 123.9, 119.1, 61.0, 29.8, 27.0, 24.2, 22.5 and 13.8; mlz (CI) 254 (100%, $\left.\mathrm{M}+\mathrm{H}^{+}\right)$and $196\left(4 \%, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right) ; m / z\left(\right.$ EI $253\left(14 \%, \mathrm{M}^{+}\right)$, 196 (100%, M - $\mathrm{C}_{4} \mathrm{H}_{9}$) (Found: M^{+}, 253.1472. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $M, 253.1467$).

Heating syn-25 in CDCl_{3} for 5 days at $60^{\circ} \mathrm{C}$ produced enough anti-25 to allow identification of its $\mathrm{NCH}_{3}{ }^{1} \mathrm{H}$ NMR signal at $\delta 2.40(3 \mathrm{H}, \mathrm{s})$.

($\boldsymbol{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \boldsymbol{R}^{*}$)- and ($\boldsymbol{R}_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} \boldsymbol{S}^{*}$)-N,N-Diisopropyl-2-\{1-[benzyl-(methyl)aminolethyl\}-1-naphthamide anti-26 and syn-26

Methyllithium ($0.52 \mathrm{ml}, 0.83 \mathrm{mmol} ; 1.6 \mathrm{M}$ solution in diethyl ether) was added dropwise over 5 minutes to a solution of imine $23(204 \mathrm{mg}, 0.69 \mathrm{mmol})$ in THF (7 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After 3 hours benzyl bromide (0.13 ml , 1.10 mmol) was added and after a further 5 minutes the mixture was warmed to $0^{\circ} \mathrm{C}$. After 30 minutes saturated aqueous ammonium chloride (5 ml) was added and the solvent was removed under reduced pressure without external heating. The aqueous residue was extracted with dichloromethane (5×10 $\mathrm{ml})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude product which contained (by analytical HPLC ($10: 1$ hexane-EtOAc $+1 \%$ triethylamine)) a ratio of 96:4 syn-26:anti-26. Purification by flash chromatography on silica gel [15:1 petrol-EtOAc $+1 \%$ triethylamine] afforded syn-26 (41 $\mathrm{mg}, 15 \%$) as a colourless oil that solidified on standing, $R_{\mathrm{f}} 0.26$ [$4: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$)-EtOAc $+1 \%$ triethylamine]; $t_{\mathrm{R}} 5.2$ $\min \left[10: 1\right.$ hexane-EtOAc $+1 \%$ triethylamine]; $v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ 3059, 3027, 2975, 2933, 2873, 2837, 2790, 1629; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, CDCl_{3}) 7.80-7.66 (4H, m, ArH), 7.42-7.34 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.20 $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.65-3.46\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right.$ and $\left.\mathrm{C} H\left(\mathrm{CH}_{3}\right) \mathrm{N}\right), 3.17\left(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 2.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{NCHCH}_{3}\right), 1.63(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\left.\mathrm{NCHCH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3} \mathrm{CHN}\right), 1.07(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.\mathrm{NCHCH}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 169.0, 140.5, 138.4, 133.7, 132.7, 129.4, 128.7, 128.3, 127.9, $127.9,126.3,125.9,125.2,124.6,60.7,59.6,50.6,46.2,39.4$, 22.0, 21.3, 20.9, 20.5 and $20.4 ; m / z(\mathrm{CI}) 403\left(10 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $302\left(100 \%, \mathrm{M}-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) ; m / z$ (EI) $210(100 \%)$ and 91 (49\%, $\mathrm{CH}_{2} \mathrm{Ph}$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 403.2756. $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$ requires $M+\mathrm{H}, 403.2749)$.

Also obtained was 3-benzyl-2,3-dimethyl-2,3-dihydro-1Hbenzo[e] isoindol-1-one $29(133 \mathrm{mg}, 54 \%)$ as a pale yellow solid, $R_{\mathrm{f}} 0.11$ [4:1 petrol-EtOAc $+1 \%$ triethylamine]; $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon_{\text {max }}\right)$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 236$ (45640), 300 (7623); $v_{\max } / \mathrm{cm}^{-1} 3060,3029,2968$, 2929, 1678; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.04(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH})$, $7.88(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.79(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.51(1 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.43(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 6.96$ $6.88(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.70-6.64(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.22(1 \mathrm{H}, \mathrm{d}$, $\left.J 14, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.05\left(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CH}_{\mathrm{A}}-\right.$ $\left.H_{\mathrm{B}} \mathrm{Ph}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7,149.2$, 135.1, 132.9, 131.7, 129.4, 129.1, 127.8, 127.7, 126.7, 126.3, 125.6, 124.1, 118.9, 64.9, 43.3, 24.6 and 23.9; m / z (CI) 301 $\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$and $210\left(8 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z$ (EI) 210 ($100 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 302.1545. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}$ requires $M+\mathrm{H}, 302.1545)$.

Heating syn- 26 in CDCl_{3} for 5 days at $60^{\circ} \mathrm{C}$ produced enough anti-26 to allow identification of its $\mathrm{NCH}_{3}{ }^{1} \mathrm{H}$ NMR signal at $\delta 2.24(3 \mathrm{H}, \mathrm{s})$ and to assign its retention time as t_{R} [10:1 hexane-EtOAc $+1 \%$ triethylamine] 4.3 min .

($\left.R_{\mathrm{a}}{ }^{*}, 1^{\prime} \boldsymbol{R}^{*}\right)$ - and $\left(R_{\mathrm{a}}{ }^{*}, \mathbf{1}^{\prime} S^{*}\right)$-N, N-Diisopropyl-2-\{ 1^{\prime}-[benzyl-(methyl)amino]pentyl\}-1-naphthamide anti-27 and syn-27

In the same way, imine 23, n-butyllithium ($0.55 \mathrm{ml}, 0.88 \mathrm{mmol}$; 1.6 M solution in hexanes) and benzyl bromide ($0.13 \mathrm{ml}, 1.10$ mmol) gave a crude product containing a ratio of $92: 8$ syn27: anti-27 (by analytical HPLC) which was purified by flash
chromatography on silica gel [15:1 petrol-EtOAc $+1 \%$ triethylamine] to afford ($R_{a}{ }^{*}, 1^{\prime} S^{*}$)-N,N-diisopropyl-2-\{1-[benzyl(methyl)amino]pentyl $\}$-1-naphthamide syn-27 ($51 \mathrm{mg}, 16 \%$) as a sticky pale yellow solid, $R_{\mathrm{f}} 0.18\left[4: 1\right.$ petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$)EtOAc $+1 \%$ triethylamine]; $t_{\mathrm{R}} \quad 3.0 \mathrm{~min}$ [15:1 hexaneEtOAc $+1 \%$ triethylamine]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3059,3026,2960$, 2934, 2870, 2858, 2792, 1709, 1630; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80-$ $7.70(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.52(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.42-7.34(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.25-7.06(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.87(1 \mathrm{H}$, dd, $J 9.5$ and 4.5 , $\mathrm{C} H \mathrm{~N}), 3.60\left(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.6-3.4(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{NCH}), 3.43\left(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{PhCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{NCHCH}_{3}\right)$, $1.7\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NCHCH}_{3}\right), 1.5-1.2(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCHCH}_{3}\right), 0.90-0.84$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{3}\right.$ and $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.2$, 135.0, 134.8, 132.5, 129.8, 128.5, 128.4, 127.9, 127.8, 127.3, 126.3, 126.0, 125.9, 125.6, 125.5, 64.9, 58.3, 50.7, 46.2, 37.8 , 33.4, 29.1, 23.1, 21.1, 21.1, 20.7, 20.4 and 14.1; m/z (CI) 445 $\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right) ; m / z$ (EI) $387\left(6 \%, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 353(2 \%$, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}$) and 49 (100%) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 445.3223 . $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}$ requires $M+\mathrm{H}, 445.3219$).
Also obtained was 3-benzyl-3-butyl-2-methyl-2,3-dihydro-1 Hbenzo [e]isoindol-1-one $\mathbf{3 0}(134 \mathrm{mg}, 54 \%)$ as a pale yellow solid, $R_{\mathrm{f}} 0.17$ [4:1 petrol-EtOAc $+1 \%$ triethylamine]; $v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 3061,3030,2955,2930,2861,1679 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $9.18(1 \mathrm{H}, \mathrm{dd}, J 8$ and $1, \mathrm{ArH}), 8.01(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.91(1 \mathrm{H}$, d, $J 7.5, \mathrm{ArH}), 7.66-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{d}, J 8.5$, $\mathrm{ArH}), 7.03(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.77(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.34(1 \mathrm{H}, \mathrm{d}, J 14$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.18\left(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.22\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.77(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 0.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 169.4, 147.5, 134.8, 132.9, 131.7, 129.5, 129.0, 127.9, $127.8,127.6,126.7,126.6,126.2,124.1,118.9,68.2,43.4$, 35.7, 24.8, 24.7, 22.4 and 13.8; m/z (CI) $344\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$ and 252 ($6 \%, \quad \mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}$); m/z (EI) 252 (100%, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 344.2017. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}$ requires $M+\mathrm{H}, 344.2014)$.

Heating syn-27 in CDCl_{3} for 5 days at $60^{\circ} \mathrm{C}$ produced enough anti-27 to allow identification of its $\mathrm{NCH}_{3}{ }^{1} \mathrm{H}$ NMR signal at $\delta 2.22(3 \mathrm{H}, \mathrm{s})$ and to assign its retention time as $t_{\mathrm{R}} 3.0$ $\min [15: 1$ hexane-EtOAc $+1 \%$ triethylamine].

Crystal data for anti-15c \dagger

Single crystals of anti-15c were grown from ethyl acetate, mounted on a thin glass fibre and transferred to the cold gas stream of the diffractometer. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}, M=297.38$, monoclinic, $a=10.1424(14), \quad b=16.7857(13), \quad c=10.7011(15) \AA$, $\beta=114.446(9)^{\circ}, U=1658.5(4) \AA^{3}, T=123(1) \mathrm{K}$, space group $P 2_{1} / c$ (no. 14), $Z=4, D_{\mathrm{c}}=1.191 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.077$ mm^{-1}. Data collected on a Rigaku AFC7R diffractometer, 4038 reflections measured, $\theta_{\text {max }}=26.99^{\circ}, 3609$ reflections unique ($R_{\text {int }}=0.0108$). ${ }^{50}$ Final agreement factors for 227 parameters gave $R_{1}=0.0562, \quad w R^{2}=0.1036$ and $\mathrm{GOF}=$ 1.010 based on all 3609 data, final difference map +0.28 and -0.24 e $\AA^{-3} .{ }^{51}$

Crystal data for anti-15d \dagger

Single crystals of anti-15d were grown from ethyl acetate, mounted on a thin glass fibre and transferred to the cold gas stream of the diffractometer. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}, M=325.44$, monoclinic, $a=11.4254(4), \quad b=20.1558(6), \quad c=16.4936(5) \AA, \quad \beta=$ 99.506(1) ${ }^{\circ}, U=3746.1(2) \AA^{3}, T=123(1) \mathrm{K}$, space group $P 2_{1} / c$ (no. 14), $Z=8, D_{\mathrm{c}}=1.154 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.073 \mathrm{~mm}^{-1}$.

[^0]Data collected on a Bruker AXS SMART CCD diffractometer, 31581 reflections measured, data truncated to $0.80 \AA$ ($\theta_{\text {max }} 26.37^{\circ}, 99.8 \%$ complete), 7639 reflections unique $\left(R_{\text {int }}=0.0441\right) .{ }^{50}$ Final agreement factors for 501 parameters gave $R_{1}=0.0490, w R^{2}=0.1078$ and $\mathrm{GOF}=1.007$ based on all 7639 data, final difference map +0.37 and -0.22 e $\AA^{-3 .} .{ }^{51}$

Crystal data for syn-24 \dagger

Single crystals of syn-24 were grown from ethyl acetate, mounted on a thin glass fibre and transferred to the cold gas stream of the diffractometer. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}, M=312.44$, orthorhombic, $a=16.219(3), b=11.966(3), c=18.823(3) \AA, U=$ 3653(1) $\AA^{3}, T=123(1) \mathrm{K}$, space group Pbca (no. 61), $Z=8$, $D_{\mathrm{c}}=1.136 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.070 \mathrm{~mm}^{-1}$. Data collected on a Bruker AXS SMART CCD diffractometer, 19092 reflections measured, data truncated to $0.80 \AA\left(\theta_{\text {max }} 26.37^{\circ}, 99.5 \%\right.$ complete), 3715 reflections unique ($R_{\text {int }}=0.0238$). ${ }^{50}$ Final agreement factors for 218 parameters gave $R_{1}=0.0473, w R^{2}=0.1014$ and GOF $=1.000$ based on all 4011 data, absolute structure not determined, final difference map +0.25 and -0.22 e $\AA^{-3} .{ }^{51}$

Acknowledgements

We are grateful to the EPSRC, Roche Discovery (Welwyn) and Zeneca for CASE awards (to N. W. and C. McC.), to the Royal Society for an Equipment Grant, and to Dr Francis Wilson for helpful discussions.

References

1 See previous paper: J. Clayden, N. Westlund, R. L. Beddoes and M. Helliwell, J. Chem. Soc., Perkin Trans. 1, 2000, DOI 10.1039/ b000668h.
2 P. Bowles, J. Clayden, M. Helliwell, C. McCarthy, M. Tomkinson and N. Westlund, J. Chem. Soc., Perkin Trans. 1, 1997, 2607.
3 P. Bowles, J. Clayden and M. Tomkinson, Tetrahedron Lett., 1995, 36, 9219.
4 Preliminary communication: J. Clayden, N. Westlund and F. X. Wilson, Tetrahedron Lett., 1996, 37, 5577.
5 Preliminary communication: J. Clayden, N. Westlund and F. X. Wilson, Tetrahedron Lett., 1999, 40, 3329.
6 D. M. Huryn, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1990, vol. 1, p. 49.
7 D. J. Cram and F. A. Abd Elhafez, J. Am. Chem. Soc., 1952, 74, 5828.

8 J. D. Morrison and H. S. Mosher, Asymmetric Organic Reactions, Prentice Hall, New Jersey, 1971.
9 M. T. Reetz, M. W. Drewes and A. Schmitz, Angew. Chem., Int. Ed. Engl., 1987, 26, 1141.
10 M. T. Reetz, Angew. Chem., Int. Ed. Engl., 1991, 30, 1531. See also M. Heneghan and G. Procter, Synlett, 1992, 489; J. M. Andrés, R. Barrio, M. A. Martínez, R. Pedrosa and A. Peréz-Encabo, J. Org. Chem., 1996, 61, 4210.
11 F. le Bideau, F. Gilloir, Y. Nilsson, C. Aubert and M. Malacria, Tetrahedron Lett., 1995, 36, 1641.
12 J. K. Whitesell, A. Bhattacharya and K. Henke, J. Chem. Soc., Chem. Commun., 1982, 988.
13 D. J. Cram and D. R. Wilson, J. Am. Chem. Soc., 1963, 85, 1245.
14 E. L. Eliel, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1983, vol. 2, p. 132.
15 M. T. Reetz, Angew. Chem., Int. Ed. Engl., 1984, 23, 556.
16 M. T. Reetz, Acc. Chem. Res., 1993, 26, 462.
17 T. Sato and J. Otera, Synlett, 1995, 351.
18 J. B. Springer, J. DeBoard and R. C. Corcoran, Tetrahedron Lett., 1995, 36, 8733.
19 G. E. Keck and S. Castellino, J. Am. Chem. Soc., 1986, 108, 3847.
20 G. E. Keck, S. Castellino and M. R. Wiley, J. Org. Chem., 1986, 51, 5480.

21 M. T. Reetz, F. Wang and K. Harms, J. Chem. Soc., Chem. Commun., 1991, 1309.
22 S. V. Ley and G. Meek, Chem. Commun., 1996, 317.
23 E. V. Sergeeva, V. I. Rozenberg, E. V. Vorontsov, T. I. Danilova,
Z. A. Starikova, A. I. Yanovsky, Y. N. Belokon' and H. Hopf, Tetrahedron: Asymmetry, 1996, 7, 3445.
24 C. Baldoli, P. Del Buttero, D. Perdicchia and T. Pilati, Tetrahedron, 1999, 55, 14089.
25 G. Delogu, L. de Lucchi and P. Maglioli, Synlett, 1989, 28.
26 V. Snieckus, Chem. Rev., 1990, 90, 879.
27 For further examples of organolithium additions to naphthalene rings, see references 2 and 28. See also J. Clayden, N. Westlund and F. X. Wilson, Tetrahedron Lett., 1999, 40, 7883; J. Clayden, C. S. Frampton, C. McCarthy and N. Westlund, Tetrahedron, 1999, 55, 14161; S. Thayumanavan, P. Beak and D. P. Curran, Tetrahedron Lett., 1996, 37, 2899; A. Ahmed, J. Clayden and M. Rowley, Chem. Commun., 1998, 297; A. I. Meyers, G. P. Roth, D. Hoyer, B. A. Barner and D. Laucher, J. Am. Chem. Soc., 1988, 110, 4611; M. Shimano and A. I. Meyers, J. Am. Chem. Soc., 1994, 116, 6437; A. I. Meyers and A. N. Hulme, J. Org. Chem., 1995, 60, 1265; M. Shimano and A. I. Meyers, J. Org. Chem., 1996, 61, 5714; B. James and A. I. Meyers, Tetrahedron Lett., 1998, 39, 5301; T. G. Gant and A. I. Meyers, Tetrahedron, 1994, 50, 2297; A. I. Meyers, J. D. Brown and D. Laucher, Tetrahedron Lett., 1987, 28, 5283 and B. Plunian, J. Mortier, M. Vaultier and L. Toupet, J. Org. Chem., 1996, 61, 5206.
28 A. Ahmed, R. A. Bragg, J. Clayden, L. W. Lai, C. McCarthy, J. H. Pink, N. Westlund and S. A. Yasin, Tetrahedron, 1998, 54, 13277.

29 J. G. Smith, P. W. Dibble and R. E. Sandborn, J. Org. Chem., 1986, 3762.

30 H. B. Hass and M. L. Bender, Org. Syn., 1963, Coll. Vol. 4, 932.
31 B. M. Trost and G.-j. Liu, J. Org. Chem., 1981, 46, 4617.
32 G. D. Hartman, W. Halczenko and B. T. Phillips, J. Org. Chem., 1985, 50, 2427.
33 For a similar discussion see references 22 and 24, and H. Gruza, K. Kiciak, A. Krasi'nski and J. Jurczak, Tetrahedron: Asymmetry, 1997, 8, 2627.
34 T. Ooi, N. Kagoshima, H. Ichikawa and K. Maruoka, J. Am. Chem. Soc., 1999, 121, 3328.
35 For an example of an alkynylaluminium ate complex as a nucleophile, see J. H. Ahn, T. B. Kim, M. J. Joung and N. M. Yoon, Bull. Korean Chem. Soc., 1996, 17, 380. For the use of alkynylaluminiums as nucleophiles, see reference 22.
36 For an example of a DIBAL-BuLi ate complex as a reducing agent, see S. Kim and K. H. Ahn, J. Org. Chem., 1984, 49, 1717.
37 R. Polt, D. Sames and J. Chruma, J. Org. Chem., 1999, 64, 6147.
38 M. T. Reetz, Top. Curr. Chem., 1987, 106, 1.
39 B. Weidmann and D. Seebach, Angew. Chem., Int. Ed. Engl., 1983, 22, 31.
40 S. E. Denmark and N. G. Almstead, J. Am. Chem. Soc., 1993, 115, 3133.

41 E. J. Corey, R. L. Danheiser and S. Chandrasekaran, J. Org. Chem., 1976, 41, 260.
42 C. Grugel, W. P. Neumann, J. Sauer and P. Seifert, Tetrahedron Lett., 1978, 2847.
43 H. G. Raubenheimer and D. Seebach, Chimia, 1986, 40, 12.
44 Similar reasoning has been used to explain the favoured geometry of some amide enolates: see A. G. Schultz and N. J. Green, J. Am. Chem. Soc., 1991, 113, 4931.
45 For simplicity we assume that the oxonium ions are intermediates in the reaction of the acetals under Lewis-acid catalysis. There is evidence that this need not be the case. See P. A. Bartlett, W. S. Johnson and J. D. Elliott, J. Am. Chem. Soc., 1983, 105, 2088; V. M. F. Choi, J. D. Elliott and W. S. Johnson, Tetrahedron Lett., 1984, 25, 591; S. E. Denmark and N. G. Almstead, J. Org. Chem., 1991, 56, 8089; S. E. Denmark and N. G. Almstead, J. Org. Chem., 1991, 56, 6485.
46 I. Fleming, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1990, vol. 2, p. 576.

47 Y. Yamamoto, T. Komatsu and K. Maruyama, J. Am. Chem. Soc., 1984, 106, 5031.
48 T. Franz, M. Hein, U. Veith, V. Jäger, E.-M. Peters, K. Peters and H. G. von Schnering, Angew. Chem., Int. Ed. Engl., 1993, 33, 1298.

49 M. T. Reetz, R. Jaeger, R. Drewlies and M. Hübel, Angew. Chem., Int. Ed. Engl., 1991, 30, 103.
50 SMART, SAINT and SADABS area-detector control and integration software, Bruker AXS Inc., Madison, WI 53719, USA, 1997.

51 G. M. Sheldrick, SHELXTL, Bruker AXS Inc., Madison, WI 53719, USA, 1997.

[^0]: \dagger CCDC reference number 207/413. See http://www.rsc.org/suppdata/p1/ b0/b000669f for crystallographic files in .cif format.

